Metamath Proof Explorer


Theorem isline3

Description: Definition of line in terms of original lattice elements. (Contributed by NM, 29-Apr-2012)

Ref Expression
Hypotheses isline3.b B=BaseK
isline3.j ˙=joinK
isline3.a A=AtomsK
isline3.n N=LinesK
isline3.m M=pmapK
Assertion isline3 KHLXBMXNpAqApqX=p˙q

Proof

Step Hyp Ref Expression
1 isline3.b B=BaseK
2 isline3.j ˙=joinK
3 isline3.a A=AtomsK
4 isline3.n N=LinesK
5 isline3.m M=pmapK
6 hllat KHLKLat
7 6 adantr KHLXBKLat
8 2 3 4 5 isline2 KLatMXNpAqApqMX=Mp˙q
9 7 8 syl KHLXBMXNpAqApqMX=Mp˙q
10 simpll KHLXBpAqAKHL
11 simplr KHLXBpAqAXB
12 6 ad2antrr KHLXBpAqAKLat
13 1 3 atbase pApB
14 13 ad2antrl KHLXBpAqApB
15 1 3 atbase qAqB
16 15 ad2antll KHLXBpAqAqB
17 1 2 latjcl KLatpBqBp˙qB
18 12 14 16 17 syl3anc KHLXBpAqAp˙qB
19 1 5 pmap11 KHLXBp˙qBMX=Mp˙qX=p˙q
20 10 11 18 19 syl3anc KHLXBpAqAMX=Mp˙qX=p˙q
21 20 anbi2d KHLXBpAqApqMX=Mp˙qpqX=p˙q
22 21 2rexbidva KHLXBpAqApqMX=Mp˙qpAqApqX=p˙q
23 9 22 bitrd KHLXBMXNpAqApqX=p˙q