Metamath Proof Explorer


Theorem islln3

Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012)

Ref Expression
Hypotheses islln3.b B=BaseK
islln3.j ˙=joinK
islln3.a A=AtomsK
islln3.n N=LLinesK
Assertion islln3 KHLXBXNpAqApqX=p˙q

Proof

Step Hyp Ref Expression
1 islln3.b B=BaseK
2 islln3.j ˙=joinK
3 islln3.a A=AtomsK
4 islln3.n N=LLinesK
5 eqid K=K
6 1 5 3 4 islln4 KHLXBXNpApKX
7 simpll KHLXBpAKHL
8 1 3 atbase pApB
9 8 adantl KHLXBpApB
10 simplr KHLXBpAXB
11 eqid K=K
12 1 11 2 5 3 cvrval3 KHLpBXBpKXqA¬qKpp˙q=X
13 7 9 10 12 syl3anc KHLXBpApKXqA¬qKpp˙q=X
14 hlatl KHLKAtLat
15 14 ad3antrrr KHLXBpAqAKAtLat
16 simpr KHLXBpAqAqA
17 simplr KHLXBpAqApA
18 11 3 atncmp KAtLatqApA¬qKpqp
19 15 16 17 18 syl3anc KHLXBpAqA¬qKpqp
20 necom qppq
21 19 20 bitrdi KHLXBpAqA¬qKppq
22 eqcom p˙q=XX=p˙q
23 22 a1i KHLXBpAqAp˙q=XX=p˙q
24 21 23 anbi12d KHLXBpAqA¬qKpp˙q=XpqX=p˙q
25 24 rexbidva KHLXBpAqA¬qKpp˙q=XqApqX=p˙q
26 13 25 bitrd KHLXBpApKXqApqX=p˙q
27 26 rexbidva KHLXBpApKXpAqApqX=p˙q
28 6 27 bitrd KHLXBXNpAqApqX=p˙q