Metamath Proof Explorer


Theorem islnm2

Description: Property of being a Noetherian left module with finite generation expanded in terms of spans. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnm2.b B=BaseM
islnm2.s S=LSubSpM
islnm2.n N=LSpanM
Assertion islnm2 MLNoeMMLModiSg𝒫BFini=Ng

Proof

Step Hyp Ref Expression
1 islnm2.b B=BaseM
2 islnm2.s S=LSubSpM
3 islnm2.n N=LSpanM
4 2 islnm MLNoeMMLModiSM𝑠iLFinGen
5 eqid M𝑠i=M𝑠i
6 5 2 3 1 islssfg2 MLModiSM𝑠iLFinGeng𝒫BFinNg=i
7 eqcom Ng=ii=Ng
8 7 rexbii g𝒫BFinNg=ig𝒫BFini=Ng
9 6 8 bitrdi MLModiSM𝑠iLFinGeng𝒫BFini=Ng
10 9 ralbidva MLModiSM𝑠iLFinGeniSg𝒫BFini=Ng
11 10 pm5.32i MLModiSM𝑠iLFinGenMLModiSg𝒫BFini=Ng
12 4 11 bitri MLNoeMMLModiSg𝒫BFini=Ng