Metamath Proof Explorer


Theorem islnopp

Description: The property for two points A and B to lie on the opposite sides of a set D Definition 9.1 of Schwabhauser p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
islnopp.a φAP
islnopp.b φBP
Assertion islnopp φAOB¬AD¬BDtDtAIB

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 islnopp.a φAP
6 islnopp.b φBP
7 eleq1 u=AuPDAPD
8 7 anbi1d u=AuPDvPDAPDvPD
9 oveq1 u=AuIv=AIv
10 9 eleq2d u=AtuIvtAIv
11 10 rexbidv u=AtDtuIvtDtAIv
12 8 11 anbi12d u=AuPDvPDtDtuIvAPDvPDtDtAIv
13 eleq1 v=BvPDBPD
14 13 anbi2d v=BAPDvPDAPDBPD
15 oveq2 v=BAIv=AIB
16 15 eleq2d v=BtAIvtAIB
17 16 rexbidv v=BtDtAIvtDtAIB
18 14 17 anbi12d v=BAPDvPDtDtAIvAPDBPDtDtAIB
19 simpl a=ub=va=u
20 19 eleq1d a=ub=vaPDuPD
21 simpr a=ub=vb=v
22 21 eleq1d a=ub=vbPDvPD
23 20 22 anbi12d a=ub=vaPDbPDuPDvPD
24 oveq12 a=ub=vaIb=uIv
25 24 eleq2d a=ub=vtaIbtuIv
26 25 rexbidv a=ub=vtDtaIbtDtuIv
27 23 26 anbi12d a=ub=vaPDbPDtDtaIbuPDvPDtDtuIv
28 27 cbvopabv ab|aPDbPDtDtaIb=uv|uPDvPDtDtuIv
29 4 28 eqtri O=uv|uPDvPDtDtuIv
30 12 18 29 brabg APBPAOBAPDBPDtDtAIB
31 5 6 30 syl2anc φAOBAPDBPDtDtAIB
32 5 biantrurd φ¬ADAP¬AD
33 eldif APDAP¬AD
34 32 33 bitr4di φ¬ADAPD
35 6 biantrurd φ¬BDBP¬BD
36 eldif BPDBP¬BD
37 35 36 bitr4di φ¬BDBPD
38 34 37 anbi12d φ¬AD¬BDAPDBPD
39 38 anbi1d φ¬AD¬BDtDtAIBAPDBPDtDtAIB
40 31 39 bitr4d φAOB¬AD¬BDtDtAIB