Metamath Proof Explorer


Theorem ismhm0

Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses ismhm0.b B=BaseS
ismhm0.c C=BaseT
ismhm0.p +˙=+S
ismhm0.q ˙=+T
ismhm0.z 0˙=0S
ismhm0.y Y=0T
Assertion ismhm0 FSMndHomTSMndTMndFSMgmHomTF0˙=Y

Proof

Step Hyp Ref Expression
1 ismhm0.b B=BaseS
2 ismhm0.c C=BaseT
3 ismhm0.p +˙=+S
4 ismhm0.q ˙=+T
5 ismhm0.z 0˙=0S
6 ismhm0.y Y=0T
7 1 2 3 4 5 6 ismhm FSMndHomTSMndTMndF:BCxByBFx+˙y=Fx˙FyF0˙=Y
8 df-3an F:BCxByBFx+˙y=Fx˙FyF0˙=YF:BCxByBFx+˙y=Fx˙FyF0˙=Y
9 mndmgm SMndSMgm
10 mndmgm TMndTMgm
11 9 10 anim12i SMndTMndSMgmTMgm
12 11 biantrurd SMndTMndF:BCxByBFx+˙y=Fx˙FySMgmTMgmF:BCxByBFx+˙y=Fx˙Fy
13 1 2 3 4 ismgmhm FSMgmHomTSMgmTMgmF:BCxByBFx+˙y=Fx˙Fy
14 12 13 bitr4di SMndTMndF:BCxByBFx+˙y=Fx˙FyFSMgmHomT
15 14 anbi1d SMndTMndF:BCxByBFx+˙y=Fx˙FyF0˙=YFSMgmHomTF0˙=Y
16 8 15 bitrid SMndTMndF:BCxByBFx+˙y=Fx˙FyF0˙=YFSMgmHomTF0˙=Y
17 16 pm5.32i SMndTMndF:BCxByBFx+˙y=Fx˙FyF0˙=YSMndTMndFSMgmHomTF0˙=Y
18 7 17 bitri FSMndHomTSMndTMndFSMgmHomTF0˙=Y