Metamath Proof Explorer


Theorem isocoinvid

Description: The inverse of an isomorphism composed with the isomorphism is the identity. (Contributed by AV, 10-Apr-2020)

Ref Expression
Hypotheses invisoinv.b B=BaseC
invisoinv.i I=IsoC
invisoinv.n N=InvC
invisoinv.c φCCat
invisoinv.x φXB
invisoinv.y φYB
invisoinv.f φFXIY
invcoisoid.1 1˙=IdC
isocoinvid.o No typesetting found for |- .o. = ( <. Y , X >. ( comp ` C ) Y ) with typecode |-
Assertion isocoinvid Could not format assertion : No typesetting found for |- ( ph -> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 invisoinv.b B=BaseC
2 invisoinv.i I=IsoC
3 invisoinv.n N=InvC
4 invisoinv.c φCCat
5 invisoinv.x φXB
6 invisoinv.y φYB
7 invisoinv.f φFXIY
8 invcoisoid.1 1˙=IdC
9 isocoinvid.o Could not format .o. = ( <. Y , X >. ( comp ` C ) Y ) : No typesetting found for |- .o. = ( <. Y , X >. ( comp ` C ) Y ) with typecode |-
10 1 2 3 4 5 6 7 invisoinvl φXNYFYNXF
11 eqid SectC=SectC
12 1 3 4 6 5 11 isinv φXNYFYNXFXNYFYSectCXFFXSectCYXNYF
13 simpl XNYFYSectCXFFXSectCYXNYFXNYFYSectCXF
14 12 13 syl6bi φXNYFYNXFXNYFYSectCXF
15 10 14 mpd φXNYFYSectCXF
16 eqid HomC=HomC
17 eqid compC=compC
18 1 16 2 4 6 5 isohom φYIXYHomCX
19 1 3 4 5 6 2 invf φXNY:XIYYIX
20 19 7 ffvelcdmd φXNYFYIX
21 18 20 sseldd φXNYFYHomCX
22 1 16 2 4 5 6 isohom φXIYXHomCY
23 22 7 sseldd φFXHomCY
24 1 16 17 8 11 4 6 5 21 23 issect2 φXNYFYSectCXFFYXcompCYXNYF=1˙Y
25 9 a1i Could not format ( ph -> .o. = ( <. Y , X >. ( comp ` C ) Y ) ) : No typesetting found for |- ( ph -> .o. = ( <. Y , X >. ( comp ` C ) Y ) ) with typecode |-
26 25 eqcomd Could not format ( ph -> ( <. Y , X >. ( comp ` C ) Y ) = .o. ) : No typesetting found for |- ( ph -> ( <. Y , X >. ( comp ` C ) Y ) = .o. ) with typecode |-
27 26 oveqd Could not format ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( F .o. ( ( X N Y ) ` F ) ) ) : No typesetting found for |- ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( F .o. ( ( X N Y ) ` F ) ) ) with typecode |-
28 27 eqeq1d Could not format ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( .1. ` Y ) <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) : No typesetting found for |- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) ( ( X N Y ) ` F ) ) = ( .1. ` Y ) <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) with typecode |-
29 24 28 bitrd Could not format ( ph -> ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) : No typesetting found for |- ( ph -> ( ( ( X N Y ) ` F ) ( Y ( Sect ` C ) X ) F <-> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) ) with typecode |-
30 15 29 mpbid Could not format ( ph -> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) : No typesetting found for |- ( ph -> ( F .o. ( ( X N Y ) ` F ) ) = ( .1. ` Y ) ) with typecode |-