Metamath Proof Explorer


Theorem isomuspgrlem2a

Description: Lemma 1 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
isomuspgrlem2.g G=xEFx
Assertion isomuspgrlem2a FXeEFe=Ge

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 isomuspgrlem2.g G=xEFx
6 5 a1i FXeEG=xEFx
7 imaeq2 x=eFx=Fe
8 7 adantl FXeEx=eFx=Fe
9 simpr FXeEeE
10 imaexg FXFeV
11 10 adantr FXeEFeV
12 6 8 9 11 fvmptd FXeEGe=Fe
13 12 eqcomd FXeEFe=Ge
14 13 ralrimiva FXeEFe=Ge