Metamath Proof Explorer


Theorem isores3

Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014)

Ref Expression
Assertion isores3 HIsomR,SABKAX=HKHKIsomR,SKX

Proof

Step Hyp Ref Expression
1 f1of1 H:A1-1 ontoBH:A1-1B
2 f1ores H:A1-1BKAHK:K1-1 ontoHK
3 2 expcom KAH:A1-1BHK:K1-1 ontoHK
4 1 3 syl5 KAH:A1-1 ontoBHK:K1-1 ontoHK
5 ssralv KAaAbAaRbHaSHbaKbAaRbHaSHb
6 ssralv KAbAaRbHaSHbbKaRbHaSHb
7 6 adantr KAaKbAaRbHaSHbbKaRbHaSHb
8 fvres aKHKa=Ha
9 fvres bKHKb=Hb
10 8 9 breqan12d aKbKHKaSHKbHaSHb
11 10 adantll KAaKbKHKaSHKbHaSHb
12 11 bibi2d KAaKbKaRbHKaSHKbaRbHaSHb
13 12 biimprd KAaKbKaRbHaSHbaRbHKaSHKb
14 13 ralimdva KAaKbKaRbHaSHbbKaRbHKaSHKb
15 7 14 syld KAaKbAaRbHaSHbbKaRbHKaSHKb
16 15 ralimdva KAaKbAaRbHaSHbaKbKaRbHKaSHKb
17 5 16 syld KAaAbAaRbHaSHbaKbKaRbHKaSHKb
18 4 17 anim12d KAH:A1-1 ontoBaAbAaRbHaSHbHK:K1-1 ontoHKaKbKaRbHKaSHKb
19 df-isom HIsomR,SABH:A1-1 ontoBaAbAaRbHaSHb
20 df-isom HKIsomR,SKHKHK:K1-1 ontoHKaKbKaRbHKaSHKb
21 18 19 20 3imtr4g KAHIsomR,SABHKIsomR,SKHK
22 21 impcom HIsomR,SABKAHKIsomR,SKHK
23 isoeq5 X=HKHKIsomR,SKXHKIsomR,SKHK
24 22 23 syl5ibrcom HIsomR,SABKAX=HKHKIsomR,SKX
25 24 3impia HIsomR,SABKAX=HKHKIsomR,SKX