| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isperp.p |  | 
						
							| 2 |  | isperp.d |  | 
						
							| 3 |  | isperp.i |  | 
						
							| 4 |  | isperp.l |  | 
						
							| 5 |  | isperp.g |  | 
						
							| 6 |  | isperp.a |  | 
						
							| 7 |  | isperp.b |  | 
						
							| 8 |  | df-br |  | 
						
							| 9 |  | df-perpg |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 | 11 4 | eqtr4di |  | 
						
							| 13 | 12 | rneqd |  | 
						
							| 14 | 13 | eleq2d |  | 
						
							| 15 | 13 | eleq2d |  | 
						
							| 16 | 14 15 | anbi12d |  | 
						
							| 17 | 10 | fveq2d |  | 
						
							| 18 | 17 | eleq2d |  | 
						
							| 19 | 18 | ralbidv |  | 
						
							| 20 | 19 | rexralbidv |  | 
						
							| 21 | 16 20 | anbi12d |  | 
						
							| 22 | 21 | opabbidv |  | 
						
							| 23 | 5 | elexd |  | 
						
							| 24 | 4 | fvexi |  | 
						
							| 25 |  | rnexg |  | 
						
							| 26 | 24 25 | mp1i |  | 
						
							| 27 | 26 26 | xpexd |  | 
						
							| 28 |  | opabssxp |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 | 27 29 | ssexd |  | 
						
							| 31 | 9 22 23 30 | fvmptd2 |  | 
						
							| 32 | 31 | eleq2d |  | 
						
							| 33 | 8 32 | bitrid |  | 
						
							| 34 |  | ineq12 |  | 
						
							| 35 |  | simpll |  | 
						
							| 36 |  | simpllr |  | 
						
							| 37 | 36 | raleqdv |  | 
						
							| 38 | 35 37 | raleqbidva |  | 
						
							| 39 | 34 38 | rexeqbidva |  | 
						
							| 40 | 39 | opelopab2a |  | 
						
							| 41 | 6 7 40 | syl2anc |  | 
						
							| 42 | 33 41 | bitrd |  |