Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ispridl2.1 | |
|
ispridl2.2 | |
||
ispridl2.3 | |
||
Assertion | ispridl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispridl2.1 | |
|
2 | ispridl2.2 | |
|
3 | ispridl2.3 | |
|
4 | 1 3 | idlss | |
5 | ssralv | |
|
6 | 4 5 | syl | |
7 | 6 | adantrr | |
8 | 1 3 | idlss | |
9 | ssralv | |
|
10 | 9 | ralimdv | |
11 | 8 10 | syl | |
12 | 11 | adantrl | |
13 | 7 12 | syld | |
14 | 13 | adantlr | |
15 | r19.26-2 | |
|
16 | pm3.35 | |
|
17 | 16 | 2ralimi | |
18 | 2ralor | |
|
19 | dfss3 | |
|
20 | dfss3 | |
|
21 | 19 20 | orbi12i | |
22 | 18 21 | sylbb2 | |
23 | 17 22 | syl | |
24 | 15 23 | sylbir | |
25 | 24 | expcom | |
26 | 14 25 | syl6 | |
27 | 26 | ralrimdvva | |
28 | 27 | ex | |
29 | 28 | adantrd | |
30 | 29 | imdistand | |
31 | df-3an | |
|
32 | df-3an | |
|
33 | 30 31 32 | 3imtr4g | |
34 | 1 2 3 | ispridl | |
35 | 33 34 | sylibrd | |
36 | 35 | imp | |