Metamath Proof Explorer


Theorem ispridl2

Description: A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ispridl2.1 G=1stR
ispridl2.2 H=2ndR
ispridl2.3 X=ranG
Assertion ispridl2 RRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR

Proof

Step Hyp Ref Expression
1 ispridl2.1 G=1stR
2 ispridl2.2 H=2ndR
3 ispridl2.3 X=ranG
4 1 3 idlss RRingOpsrIdlRrX
5 ssralv rXaXbXaHbPaPbParbXaHbPaPbP
6 4 5 syl RRingOpsrIdlRaXbXaHbPaPbParbXaHbPaPbP
7 6 adantrr RRingOpsrIdlRsIdlRaXbXaHbPaPbParbXaHbPaPbP
8 1 3 idlss RRingOpssIdlRsX
9 ssralv sXbXaHbPaPbPbsaHbPaPbP
10 9 ralimdv sXarbXaHbPaPbParbsaHbPaPbP
11 8 10 syl RRingOpssIdlRarbXaHbPaPbParbsaHbPaPbP
12 11 adantrl RRingOpsrIdlRsIdlRarbXaHbPaPbParbsaHbPaPbP
13 7 12 syld RRingOpsrIdlRsIdlRaXbXaHbPaPbParbsaHbPaPbP
14 13 adantlr RRingOpsPIdlRrIdlRsIdlRaXbXaHbPaPbParbsaHbPaPbP
15 r19.26-2 arbsaHbPaHbPaPbParbsaHbParbsaHbPaPbP
16 pm3.35 aHbPaHbPaPbPaPbP
17 16 2ralimi arbsaHbPaHbPaPbParbsaPbP
18 2ralor arbsaPbParaPbsbP
19 dfss3 rParaP
20 dfss3 sPbsbP
21 19 20 orbi12i rPsParaPbsbP
22 18 21 sylbb2 arbsaPbPrPsP
23 17 22 syl arbsaHbPaHbPaPbPrPsP
24 15 23 sylbir arbsaHbParbsaHbPaPbPrPsP
25 24 expcom arbsaHbPaPbParbsaHbPrPsP
26 14 25 syl6 RRingOpsPIdlRrIdlRsIdlRaXbXaHbPaPbParbsaHbPrPsP
27 26 ralrimdvva RRingOpsPIdlRaXbXaHbPaPbPrIdlRsIdlRarbsaHbPrPsP
28 27 ex RRingOpsPIdlRaXbXaHbPaPbPrIdlRsIdlRarbsaHbPrPsP
29 28 adantrd RRingOpsPIdlRPXaXbXaHbPaPbPrIdlRsIdlRarbsaHbPrPsP
30 29 imdistand RRingOpsPIdlRPXaXbXaHbPaPbPPIdlRPXrIdlRsIdlRarbsaHbPrPsP
31 df-3an PIdlRPXaXbXaHbPaPbPPIdlRPXaXbXaHbPaPbP
32 df-3an PIdlRPXrIdlRsIdlRarbsaHbPrPsPPIdlRPXrIdlRsIdlRarbsaHbPrPsP
33 30 31 32 3imtr4g RRingOpsPIdlRPXaXbXaHbPaPbPPIdlRPXrIdlRsIdlRarbsaHbPrPsP
34 1 2 3 ispridl RRingOpsPPrIdlRPIdlRPXrIdlRsIdlRarbsaHbPrPsP
35 33 34 sylibrd RRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR
36 35 imp RRingOpsPIdlRPXaXbXaHbPaPbPPPrIdlR