Metamath Proof Explorer


Theorem isps

Description: The predicate "is a poset" i.e. a transitive, reflexive, antisymmetric relation. (Contributed by NM, 11-May-2008)

Ref Expression
Assertion isps RARPosetRelRelRRRRRR-1=IR

Proof

Step Hyp Ref Expression
1 releq r=RRelrRelR
2 coeq1 r=Rrr=Rr
3 coeq2 r=RRr=RR
4 2 3 eqtrd r=Rrr=RR
5 id r=Rr=R
6 4 5 sseq12d r=RrrrRRR
7 cnveq r=Rr-1=R-1
8 5 7 ineq12d r=Rrr-1=RR-1
9 unieq r=Rr=R
10 9 unieqd r=Rr=R
11 10 reseq2d r=RIr=IR
12 8 11 eqeq12d r=Rrr-1=IrRR-1=IR
13 1 6 12 3anbi123d r=RRelrrrrrr-1=IrRelRRRRRR-1=IR
14 df-ps PosetRel=r|Relrrrrrr-1=Ir
15 13 14 elab2g RARPosetRelRelRRRRRR-1=IR