Metamath Proof Explorer


Theorem isptfin

Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypothesis isptfin.1 X=A
Assertion isptfin ABAPtFinxXyA|xyFin

Proof

Step Hyp Ref Expression
1 isptfin.1 X=A
2 unieq a=Aa=A
3 2 1 eqtr4di a=Aa=X
4 rabeq a=Aya|xy=yA|xy
5 4 eleq1d a=Aya|xyFinyA|xyFin
6 3 5 raleqbidv a=Axaya|xyFinxXyA|xyFin
7 df-ptfin PtFin=a|xaya|xyFin
8 6 7 elab2g ABAPtFinxXyA|xyFin