Description: The predicate "is a (unital) ring". Definition of "ring with unit" in Schechter p. 187. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isring.b | |
|
isring.g | |
||
isring.p | |
||
isring.t | |
||
Assertion | isring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isring.b | |
|
2 | isring.g | |
|
3 | isring.p | |
|
4 | isring.t | |
|
5 | fveq2 | |
|
6 | 5 2 | eqtr4di | |
7 | 6 | eleq1d | |
8 | fvexd | |
|
9 | fveq2 | |
|
10 | 9 1 | eqtr4di | |
11 | fvexd | |
|
12 | simpl | |
|
13 | 12 | fveq2d | |
14 | 13 3 | eqtr4di | |
15 | fvexd | |
|
16 | simpll | |
|
17 | 16 | fveq2d | |
18 | 17 4 | eqtr4di | |
19 | simpllr | |
|
20 | simpr | |
|
21 | eqidd | |
|
22 | simplr | |
|
23 | 22 | oveqd | |
24 | 20 21 23 | oveq123d | |
25 | 20 | oveqd | |
26 | 20 | oveqd | |
27 | 22 25 26 | oveq123d | |
28 | 24 27 | eqeq12d | |
29 | 22 | oveqd | |
30 | eqidd | |
|
31 | 20 29 30 | oveq123d | |
32 | 20 | oveqd | |
33 | 22 26 32 | oveq123d | |
34 | 31 33 | eqeq12d | |
35 | 28 34 | anbi12d | |
36 | 19 35 | raleqbidv | |
37 | 19 36 | raleqbidv | |
38 | 19 37 | raleqbidv | |
39 | 15 18 38 | sbcied2 | |
40 | 11 14 39 | sbcied2 | |
41 | 8 10 40 | sbcied2 | |
42 | 7 41 | anbi12d | |
43 | df-ring | |
|
44 | 42 43 | elrab2 | |
45 | 3anass | |
|
46 | 44 45 | bitr4i | |