Metamath Proof Explorer


Theorem iss

Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion iss AIA=IdomA

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 opeldm xyAxdomA
4 3 a1i AIxyAxdomA
5 ssel AIxyAxyI
6 4 5 jcad AIxyAxdomAxyI
7 df-br xIyxyI
8 2 ideq xIyx=y
9 7 8 bitr3i xyIx=y
10 1 eldm2 xdomAyxyA
11 opeq2 x=yxx=xy
12 11 eleq1d x=yxxAxyA
13 12 biimprcd xyAx=yxxA
14 9 13 biimtrid xyAxyIxxA
15 5 14 sylcom AIxyAxxA
16 15 exlimdv AIyxyAxxA
17 10 16 biimtrid AIxdomAxxA
18 12 imbi2d x=yxdomAxxAxdomAxyA
19 17 18 syl5ibcom AIx=yxdomAxyA
20 9 19 biimtrid AIxyIxdomAxyA
21 20 impcomd AIxdomAxyIxyA
22 6 21 impbid AIxyAxdomAxyI
23 2 opelresi xyIdomAxdomAxyI
24 22 23 bitr4di AIxyAxyIdomA
25 24 alrimivv AIxyxyAxyIdomA
26 reli RelI
27 relss AIRelIRelA
28 26 27 mpi AIRelA
29 relres RelIdomA
30 eqrel RelARelIdomAA=IdomAxyxyAxyIdomA
31 28 29 30 sylancl AIA=IdomAxyxyAxyIdomA
32 25 31 mpbird AIA=IdomA
33 resss IdomAI
34 sseq1 A=IdomAAIIdomAI
35 33 34 mpbiri A=IdomAAI
36 32 35 impbii AIA=IdomA