Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | vex | |
|
3 | 1 2 | opeldm | |
4 | 3 | a1i | |
5 | ssel | |
|
6 | 4 5 | jcad | |
7 | df-br | |
|
8 | 2 | ideq | |
9 | 7 8 | bitr3i | |
10 | 1 | eldm2 | |
11 | opeq2 | |
|
12 | 11 | eleq1d | |
13 | 12 | biimprcd | |
14 | 9 13 | biimtrid | |
15 | 5 14 | sylcom | |
16 | 15 | exlimdv | |
17 | 10 16 | biimtrid | |
18 | 12 | imbi2d | |
19 | 17 18 | syl5ibcom | |
20 | 9 19 | biimtrid | |
21 | 20 | impcomd | |
22 | 6 21 | impbid | |
23 | 2 | opelresi | |
24 | 22 23 | bitr4di | |
25 | 24 | alrimivv | |
26 | reli | |
|
27 | relss | |
|
28 | 26 27 | mpi | |
29 | relres | |
|
30 | eqrel | |
|
31 | 28 29 30 | sylancl | |
32 | 25 31 | mpbird | |
33 | resss | |
|
34 | sseq1 | |
|
35 | 33 34 | mpbiri | |
36 | 32 35 | impbii | |