Metamath Proof Explorer


Theorem istgp

Description: The predicate "is a topological group". Definition 1 of BourbakiTop1 p. III.1. (Contributed by FL, 18-Apr-2010) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses istgp.1 J=TopOpenG
istgp.2 I=invgG
Assertion istgp GTopGrpGGrpGTopMndIJCnJ

Proof

Step Hyp Ref Expression
1 istgp.1 J=TopOpenG
2 istgp.2 I=invgG
3 elin GGrpTopMndGGrpGTopMnd
4 3 anbi1i GGrpTopMndIJCnJGGrpGTopMndIJCnJ
5 fvexd f=GTopOpenfV
6 simpl f=Gj=TopOpenff=G
7 6 fveq2d f=Gj=TopOpenfinvgf=invgG
8 7 2 eqtr4di f=Gj=TopOpenfinvgf=I
9 id j=TopOpenfj=TopOpenf
10 fveq2 f=GTopOpenf=TopOpenG
11 10 1 eqtr4di f=GTopOpenf=J
12 9 11 sylan9eqr f=Gj=TopOpenfj=J
13 12 12 oveq12d f=Gj=TopOpenfjCnj=JCnJ
14 8 13 eleq12d f=Gj=TopOpenfinvgfjCnjIJCnJ
15 5 14 sbcied f=G[˙TopOpenf/j]˙invgfjCnjIJCnJ
16 df-tgp TopGrp=fGrpTopMnd|[˙TopOpenf/j]˙invgfjCnj
17 15 16 elrab2 GTopGrpGGrpTopMndIJCnJ
18 df-3an GGrpGTopMndIJCnJGGrpGTopMndIJCnJ
19 4 17 18 3bitr4i GTopGrpGGrpGTopMndIJCnJ