Metamath Proof Explorer


Theorem istopon

Description: Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion istopon JTopOnBJTopB=J

Proof

Step Hyp Ref Expression
1 elfvex JTopOnBBV
2 uniexg JTopJV
3 eleq1 B=JBVJV
4 2 3 syl5ibrcom JTopB=JBV
5 4 imp JTopB=JBV
6 eqeq1 b=Bb=jB=j
7 6 rabbidv b=BjTop|b=j=jTop|B=j
8 df-topon TopOn=bVjTop|b=j
9 vpwex 𝒫bV
10 9 pwex 𝒫𝒫bV
11 rabss jTop|b=j𝒫𝒫bjTopb=jj𝒫𝒫b
12 pwuni j𝒫j
13 pweq b=j𝒫b=𝒫j
14 12 13 sseqtrrid b=jj𝒫b
15 velpw j𝒫𝒫bj𝒫b
16 14 15 sylibr b=jj𝒫𝒫b
17 16 a1i jTopb=jj𝒫𝒫b
18 11 17 mprgbir jTop|b=j𝒫𝒫b
19 10 18 ssexi jTop|b=jV
20 7 8 19 fvmpt3i BVTopOnB=jTop|B=j
21 20 eleq2d BVJTopOnBJjTop|B=j
22 unieq j=Jj=J
23 22 eqeq2d j=JB=jB=J
24 23 elrab JjTop|B=jJTopB=J
25 21 24 bitrdi BVJTopOnBJTopB=J
26 1 5 25 pm5.21nii JTopOnBJTopB=J