Metamath Proof Explorer


Theorem isunit

Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 8-Dec-2015)

Ref Expression
Hypotheses unit.1 U = Unit R
unit.2 1 ˙ = 1 R
unit.3 ˙ = r R
unit.4 S = opp r R
unit.5 E = r S
Assertion isunit X U X ˙ 1 ˙ X E 1 ˙

Proof

Step Hyp Ref Expression
1 unit.1 U = Unit R
2 unit.2 1 ˙ = 1 R
3 unit.3 ˙ = r R
4 unit.4 S = opp r R
5 unit.5 E = r S
6 elfvdm X Unit R R dom Unit
7 6 1 eleq2s X U R dom Unit
8 7 elexd X U R V
9 df-br X ˙ 1 ˙ X 1 ˙ ˙
10 elfvdm X 1 ˙ r R R dom r
11 10 3 eleq2s X 1 ˙ ˙ R dom r
12 11 elexd X 1 ˙ ˙ R V
13 9 12 sylbi X ˙ 1 ˙ R V
14 13 adantr X ˙ 1 ˙ X E 1 ˙ R V
15 fveq2 r = R r r = r R
16 15 3 syl6eqr r = R r r = ˙
17 fveq2 r = R opp r r = opp r R
18 17 4 syl6eqr r = R opp r r = S
19 18 fveq2d r = R r opp r r = r S
20 19 5 syl6eqr r = R r opp r r = E
21 16 20 ineq12d r = R r r r opp r r = ˙ E
22 21 cnveqd r = R r r r opp r r -1 = ˙ E -1
23 fveq2 r = R 1 r = 1 R
24 23 2 syl6eqr r = R 1 r = 1 ˙
25 24 sneqd r = R 1 r = 1 ˙
26 22 25 imaeq12d r = R r r r opp r r -1 1 r = ˙ E -1 1 ˙
27 df-unit Unit = r V r r r opp r r -1 1 r
28 3 fvexi ˙ V
29 28 inex1 ˙ E V
30 29 cnvex ˙ E -1 V
31 30 imaex ˙ E -1 1 ˙ V
32 26 27 31 fvmpt R V Unit R = ˙ E -1 1 ˙
33 1 32 syl5eq R V U = ˙ E -1 1 ˙
34 33 eleq2d R V X U X ˙ E -1 1 ˙
35 inss1 ˙ E ˙
36 3 reldvdsr Rel ˙
37 relss ˙ E ˙ Rel ˙ Rel ˙ E
38 35 36 37 mp2 Rel ˙ E
39 eliniseg2 Rel ˙ E X ˙ E -1 1 ˙ X ˙ E 1 ˙
40 38 39 ax-mp X ˙ E -1 1 ˙ X ˙ E 1 ˙
41 brin X ˙ E 1 ˙ X ˙ 1 ˙ X E 1 ˙
42 40 41 bitri X ˙ E -1 1 ˙ X ˙ 1 ˙ X E 1 ˙
43 34 42 syl6bb R V X U X ˙ 1 ˙ X E 1 ˙
44 8 14 43 pm5.21nii X U X ˙ 1 ˙ X E 1 ˙