Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 8-Dec-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unit.1 | |
|
unit.2 | |
||
unit.3 | |
||
unit.4 | |
||
unit.5 | |
||
Assertion | isunit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unit.1 | |
|
2 | unit.2 | |
|
3 | unit.3 | |
|
4 | unit.4 | |
|
5 | unit.5 | |
|
6 | elfvdm | |
|
7 | 6 1 | eleq2s | |
8 | 7 | elexd | |
9 | df-br | |
|
10 | elfvdm | |
|
11 | 10 3 | eleq2s | |
12 | 11 | elexd | |
13 | 9 12 | sylbi | |
14 | 13 | adantr | |
15 | fveq2 | |
|
16 | 15 3 | eqtr4di | |
17 | fveq2 | |
|
18 | 17 4 | eqtr4di | |
19 | 18 | fveq2d | |
20 | 19 5 | eqtr4di | |
21 | 16 20 | ineq12d | |
22 | 21 | cnveqd | |
23 | fveq2 | |
|
24 | 23 2 | eqtr4di | |
25 | 24 | sneqd | |
26 | 22 25 | imaeq12d | |
27 | df-unit | |
|
28 | 3 | fvexi | |
29 | 28 | inex1 | |
30 | 29 | cnvex | |
31 | 30 | imaex | |
32 | 26 27 31 | fvmpt | |
33 | 1 32 | eqtrid | |
34 | 33 | eleq2d | |
35 | inss1 | |
|
36 | 3 | reldvdsr | |
37 | relss | |
|
38 | 35 36 37 | mp2 | |
39 | eliniseg2 | |
|
40 | 38 39 | ax-mp | |
41 | brin | |
|
42 | 40 41 | bitri | |
43 | 34 42 | bitrdi | |
44 | 8 14 43 | pm5.21nii | |