Metamath Proof Explorer


Theorem isunit

Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 8-Dec-2015)

Ref Expression
Hypotheses unit.1 U=UnitR
unit.2 1˙=1R
unit.3 ˙=rR
unit.4 S=opprR
unit.5 E=rS
Assertion isunit XUX˙1˙XE1˙

Proof

Step Hyp Ref Expression
1 unit.1 U=UnitR
2 unit.2 1˙=1R
3 unit.3 ˙=rR
4 unit.4 S=opprR
5 unit.5 E=rS
6 elfvdm XUnitRRdomUnit
7 6 1 eleq2s XURdomUnit
8 7 elexd XURV
9 df-br X˙1˙X1˙˙
10 elfvdm X1˙rRRdomr
11 10 3 eleq2s X1˙˙Rdomr
12 11 elexd X1˙˙RV
13 9 12 sylbi X˙1˙RV
14 13 adantr X˙1˙XE1˙RV
15 fveq2 r=Rrr=rR
16 15 3 eqtr4di r=Rrr=˙
17 fveq2 r=Ropprr=opprR
18 17 4 eqtr4di r=Ropprr=S
19 18 fveq2d r=Rropprr=rS
20 19 5 eqtr4di r=Rropprr=E
21 16 20 ineq12d r=Rrrropprr=˙E
22 21 cnveqd r=Rrrropprr-1=˙E-1
23 fveq2 r=R1r=1R
24 23 2 eqtr4di r=R1r=1˙
25 24 sneqd r=R1r=1˙
26 22 25 imaeq12d r=Rrrropprr-11r=˙E-11˙
27 df-unit Unit=rVrrropprr-11r
28 3 fvexi ˙V
29 28 inex1 ˙EV
30 29 cnvex ˙E-1V
31 30 imaex ˙E-11˙V
32 26 27 31 fvmpt RVUnitR=˙E-11˙
33 1 32 eqtrid RVU=˙E-11˙
34 33 eleq2d RVXUX˙E-11˙
35 inss1 ˙E˙
36 3 reldvdsr Rel˙
37 relss ˙E˙Rel˙Rel˙E
38 35 36 37 mp2 Rel˙E
39 eliniseg2 Rel˙EX˙E-11˙X˙E1˙
40 38 39 ax-mp X˙E-11˙X˙E1˙
41 brin X˙E1˙X˙1˙XE1˙
42 40 41 bitri X˙E-11˙X˙1˙XE1˙
43 34 42 bitrdi RVXUX˙1˙XE1˙
44 8 14 43 pm5.21nii XUX˙1˙XE1˙