Metamath Proof Explorer


Theorem itcoval1

Description: A function iterated once. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval1 Could not format assertion : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-
2 1 fveq1d Could not format ( F e. V -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) with typecode |-
3 2 adantl Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) ) with typecode |-
4 nn0uz 0=0
5 0nn0 00
6 5 a1i RelFFV00
7 1e0p1 1=0+1
8 1 eqcomd Could not format ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) : No typesetting found for |- ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) with typecode |-
9 8 fveq1d Could not format ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( ( IterComp ` F ) ` 0 ) ) : No typesetting found for |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) = ( ( IterComp ` F ) ` 0 ) ) with typecode |-
10 itcoval0 Could not format ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) with typecode |-
11 9 10 eqtrd FVseq0gV,jVFgi0ifi=0IdomFF0=IdomF
12 11 adantl RelFFVseq0gV,jVFgi0ifi=0IdomFF0=IdomF
13 eqidd RelFFVi0ifi=0IdomFF=i0ifi=0IdomFF
14 ax-1ne0 10
15 14 neii ¬1=0
16 eqeq1 i=1i=01=0
17 15 16 mtbiri i=1¬i=0
18 17 iffalsed i=1ifi=0IdomFF=F
19 18 adantl RelFFVi=1ifi=0IdomFF=F
20 1nn0 10
21 20 a1i RelFFV10
22 simpr RelFFVFV
23 13 19 21 22 fvmptd RelFFVi0ifi=0IdomFF1=F
24 4 6 7 12 23 seqp1d RelFFVseq0gV,jVFgi0ifi=0IdomFF1=IdomFgV,jVFgF
25 eqidd FVgV,jVFg=gV,jVFg
26 coeq2 g=IdomFFg=FIdomF
27 26 ad2antrl FVg=IdomFj=FFg=FIdomF
28 dmexg FVdomFV
29 28 resiexd FVIdomFV
30 elex FVFV
31 coexg FVIdomFVFIdomFV
32 29 31 mpdan FVFIdomFV
33 25 27 29 30 32 ovmpod FVIdomFgV,jVFgF=FIdomF
34 33 adantl RelFFVIdomFgV,jVFgF=FIdomF
35 coires1 FIdomF=FdomF
36 resdm RelFFdomF=F
37 36 adantr RelFFVFdomF=F
38 35 37 eqtrid RelFFVFIdomF=F
39 34 38 eqtrd RelFFVIdomFgV,jVFgF=F
40 24 39 eqtrd RelFFVseq0gV,jVFgi0ifi=0IdomFF1=F
41 3 40 eqtrd Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) with typecode |-