Metamath Proof Explorer


Theorem itcoval2

Description: A function iterated twice. (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval2 Could not format assertion : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-
2 1 fveq1d Could not format ( F e. V -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) with typecode |-
3 2 adantl Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 2 ) ) with typecode |-
4 nn0uz 0=0
5 1nn0 10
6 5 a1i RelFFV10
7 df-2 2=1+1
8 1 eqcomd Could not format ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) : No typesetting found for |- ( F e. V -> seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) = ( IterComp ` F ) ) with typecode |-
9 8 fveq1d Could not format ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) : No typesetting found for |- ( F e. V -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) with typecode |-
10 9 adantl Could not format ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 1 ) = ( ( IterComp ` F ) ` 1 ) ) with typecode |-
11 itcoval1 Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 1 ) = F ) with typecode |-
12 10 11 eqtrd RelFFVseq0gV,jVFgi0ifi=0IdomFF1=F
13 eqidd RelFFVi0ifi=0IdomFF=i0ifi=0IdomFF
14 2ne0 20
15 neeq1 i=2i020
16 14 15 mpbiri i=2i0
17 16 neneqd i=2¬i=0
18 17 iffalsed i=2ifi=0IdomFF=F
19 18 adantl RelFFVi=2ifi=0IdomFF=F
20 2nn0 20
21 20 a1i RelFFV20
22 simpr RelFFVFV
23 13 19 21 22 fvmptd RelFFVi0ifi=0IdomFF2=F
24 4 6 7 12 23 seqp1d RelFFVseq0gV,jVFgi0ifi=0IdomFF2=FgV,jVFgF
25 eqidd FVgV,jVFg=gV,jVFg
26 coeq2 g=FFg=FF
27 26 ad2antrl FVg=Fj=FFg=FF
28 elex FVFV
29 coexg FVFVFFV
30 29 anidms FVFFV
31 25 27 28 28 30 ovmpod FVFgV,jVFgF=FF
32 31 adantl RelFFVFgV,jVFgF=FF
33 3 24 32 3eqtrd Could not format ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) : No typesetting found for |- ( ( Rel F /\ F e. V ) -> ( ( IterComp ` F ) ` 2 ) = ( F o. F ) ) with typecode |-