Description: Lemma for itg1add . (Contributed by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | i1fadd.1 | |
|
i1fadd.2 | |
||
itg1add.3 | |
||
Assertion | itg1addlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fadd.1 | |
|
2 | i1fadd.2 | |
|
3 | itg1add.3 | |
|
4 | eqeq1 | |
|
5 | eqeq1 | |
|
6 | 4 5 | bi2anan9 | |
7 | sneq | |
|
8 | 7 | imaeq2d | |
9 | sneq | |
|
10 | 9 | imaeq2d | |
11 | 8 10 | ineqan12d | |
12 | 11 | fveq2d | |
13 | 6 12 | ifbieq2d | |
14 | c0ex | |
|
15 | fvex | |
|
16 | 14 15 | ifex | |
17 | 13 3 16 | ovmpoa | |
18 | iffalse | |
|
19 | 17 18 | sylan9eq | |