Metamath Proof Explorer


Theorem itg1addlem3

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
itg1add.3 I=i,jifi=0j=00volF-1iG-1j
Assertion itg1addlem3 AB¬A=0B=0AIB=volF-1AG-1B

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 itg1add.3 I=i,jifi=0j=00volF-1iG-1j
4 eqeq1 i=Ai=0A=0
5 eqeq1 j=Bj=0B=0
6 4 5 bi2anan9 i=Aj=Bi=0j=0A=0B=0
7 sneq i=Ai=A
8 7 imaeq2d i=AF-1i=F-1A
9 sneq j=Bj=B
10 9 imaeq2d j=BG-1j=G-1B
11 8 10 ineqan12d i=Aj=BF-1iG-1j=F-1AG-1B
12 11 fveq2d i=Aj=BvolF-1iG-1j=volF-1AG-1B
13 6 12 ifbieq2d i=Aj=Bifi=0j=00volF-1iG-1j=ifA=0B=00volF-1AG-1B
14 c0ex 0V
15 fvex volF-1AG-1BV
16 14 15 ifex ifA=0B=00volF-1AG-1BV
17 13 3 16 ovmpoa ABAIB=ifA=0B=00volF-1AG-1B
18 iffalse ¬A=0B=0ifA=0B=00volF-1AG-1B=volF-1AG-1B
19 17 18 sylan9eq AB¬A=0B=0AIB=volF-1AG-1B