Metamath Proof Explorer


Theorem itg2add

Description: The S.2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itg2add.f1 φFMblFn
itg2add.f2 φF:0+∞
itg2add.f3 φ2F
itg2add.g1 φGMblFn
itg2add.g2 φG:0+∞
itg2add.g3 φ2G
Assertion itg2add φ2F+fG=2F+2G

Proof

Step Hyp Ref Expression
1 itg2add.f1 φFMblFn
2 itg2add.f2 φF:0+∞
3 itg2add.f3 φ2F
4 itg2add.g1 φGMblFn
5 itg2add.g2 φG:0+∞
6 itg2add.g3 φ2G
7 1 2 mbfi1fseq φff:dom1n0𝑝ffnfnffn+1xnfnxFx
8 4 5 mbfi1fseq φgg:dom1n0𝑝fgngnfgn+1xngnxGx
9 exdistrv fgf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxff:dom1n0𝑝ffnfnffn+1xnfnxFxgg:dom1n0𝑝fgngnfgn+1xngnxGx
10 1 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxFMblFn
11 2 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxF:0+∞
12 3 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGx2F
13 4 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxGMblFn
14 5 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxG:0+∞
15 6 adantr φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGx2G
16 simprl1 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxf:dom1
17 simprl2 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxn0𝑝ffnfnffn+1
18 simprl3 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxxnfnxFx
19 simprr1 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxg:dom1
20 simprr2 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxn0𝑝fgngnfgn+1
21 simprr3 φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGxxngnxGx
22 10 11 12 13 14 15 16 17 18 19 20 21 itg2addlem φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGx2F+fG=2F+2G
23 22 ex φf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGx2F+fG=2F+2G
24 23 exlimdvv φfgf:dom1n0𝑝ffnfnffn+1xnfnxFxg:dom1n0𝑝fgngnfgn+1xngnxGx2F+fG=2F+2G
25 9 24 biimtrrid φff:dom1n0𝑝ffnfnffn+1xnfnxFxgg:dom1n0𝑝fgngnfgn+1xngnxGx2F+fG=2F+2G
26 7 8 25 mp2and φ2F+fG=2F+2G