Description: The S.2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itg2add.f1 | |
|
itg2add.f2 | |
||
itg2add.f3 | |
||
itg2add.g1 | |
||
itg2add.g2 | |
||
itg2add.g3 | |
||
Assertion | itg2add | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg2add.f1 | |
|
2 | itg2add.f2 | |
|
3 | itg2add.f3 | |
|
4 | itg2add.g1 | |
|
5 | itg2add.g2 | |
|
6 | itg2add.g3 | |
|
7 | 1 2 | mbfi1fseq | |
8 | 4 5 | mbfi1fseq | |
9 | exdistrv | |
|
10 | 1 | adantr | |
11 | 2 | adantr | |
12 | 3 | adantr | |
13 | 4 | adantr | |
14 | 5 | adantr | |
15 | 6 | adantr | |
16 | simprl1 | |
|
17 | simprl2 | |
|
18 | simprl3 | |
|
19 | simprr1 | |
|
20 | simprr2 | |
|
21 | simprr3 | |
|
22 | 10 11 12 13 14 15 16 17 18 19 20 21 | itg2addlem | |
23 | 22 | ex | |
24 | 23 | exlimdvv | |
25 | 9 24 | biimtrrid | |
26 | 7 8 25 | mp2and | |