Metamath Proof Explorer


Theorem itg2l

Description: Elementhood in the set L of lower sums of the integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L=x|gdom1gfFx=1g
Assertion itg2l ALgdom1gfFA=1g

Proof

Step Hyp Ref Expression
1 itg2val.1 L=x|gdom1gfFx=1g
2 1 eleq2i ALAx|gdom1gfFx=1g
3 simpr gfFA=1gA=1g
4 fvex 1gV
5 3 4 eqeltrdi gfFA=1gAV
6 5 rexlimivw gdom1gfFA=1gAV
7 eqeq1 x=Ax=1gA=1g
8 7 anbi2d x=AgfFx=1ggfFA=1g
9 8 rexbidv x=Agdom1gfFx=1ggdom1gfFA=1g
10 6 9 elab3 Ax|gdom1gfFx=1ggdom1gfFA=1g
11 2 10 bitri ALgdom1gfFA=1g