Metamath Proof Explorer


Theorem itgge0

Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgge0.1 φxAB𝐿1
itgge0.2 φxAB
itgge0.3 φxA0B
Assertion itgge0 φ0ABdx

Proof

Step Hyp Ref Expression
1 itgge0.1 φxAB𝐿1
2 itgge0.2 φxAB
3 itgge0.3 φxA0B
4 itgz A0dx=0
5 fconstmpt A×0=xA0
6 iblmbf xAB𝐿1xABMblFn
7 1 6 syl φxABMblFn
8 7 2 mbfdm2 φAdomvol
9 ibl0 AdomvolA×0𝐿1
10 8 9 syl φA×0𝐿1
11 5 10 eqeltrrid φxA0𝐿1
12 0red φxA0
13 11 1 12 2 3 itgle φA0dxABdx
14 4 13 eqbrtrrid φ0ABdx