Metamath Proof Explorer


Theorem itgim

Description: Imaginary part of an integral. (Contributed by Mario Carneiro, 14-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φxABV
itgcnval.2 φxAB𝐿1
Assertion itgim φABdx=ABdx

Proof

Step Hyp Ref Expression
1 itgcnval.1 φxABV
2 itgcnval.2 φxAB𝐿1
3 1 2 itgcnval φABdx=ABdx+iABdx
4 3 fveq2d φABdx=ABdx+iABdx
5 iblmbf xAB𝐿1xABMblFn
6 2 5 syl φxABMblFn
7 6 1 mbfmptcl φxAB
8 7 recld φxAB
9 7 iblcn φxAB𝐿1xAB𝐿1xAB𝐿1
10 2 9 mpbid φxAB𝐿1xAB𝐿1
11 10 simpld φxAB𝐿1
12 8 11 itgrecl φABdx
13 7 imcld φxAB
14 10 simprd φxAB𝐿1
15 13 14 itgrecl φABdx
16 12 15 crimd φABdx+iABdx=ABdx
17 4 16 eqtrd φABdx=ABdx