Metamath Proof Explorer


Theorem itgitg2

Description: Transfer an integral using S.2 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgitg2.1 φxA
itgitg2.2 φx0A
itgitg2.3 φxA𝐿1
Assertion itgitg2 φAdx=2xA

Proof

Step Hyp Ref Expression
1 itgitg2.1 φxA
2 itgitg2.2 φx0A
3 itgitg2.3 φxA𝐿1
4 1 3 2 itgposval φAdx=2xifxA0
5 iftrue xifxA0=A
6 5 mpteq2ia xifxA0=xA
7 6 fveq2i 2xifxA0=2xA
8 4 7 eqtrdi φAdx=2xA