Metamath Proof Explorer


Theorem itrere

Description: _i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024)

Ref Expression
Assertion itrere R i R R = 0

Proof

Step Hyp Ref Expression
1 ax-rrecex R R 0 x R x = 1
2 sn-inelr ¬ i
3 ax-icn i
4 3 a1i R R 0 x R x = 1 i R i
5 simplll R R 0 x R x = 1 i R R
6 5 recnd R R 0 x R x = 1 i R R
7 simplrl R R 0 x R x = 1 i R x
8 7 recnd R R 0 x R x = 1 i R x
9 4 6 8 mulassd R R 0 x R x = 1 i R i R x = i R x
10 simplrr R R 0 x R x = 1 i R R x = 1
11 10 oveq2d R R 0 x R x = 1 i R i R x = i 1
12 it1ei i 1 = i
13 12 a1i R R 0 x R x = 1 i R i 1 = i
14 9 11 13 3eqtrd R R 0 x R x = 1 i R i R x = i
15 simpr R R 0 x R x = 1 i R i R
16 15 7 remulcld R R 0 x R x = 1 i R i R x
17 14 16 eqeltrrd R R 0 x R x = 1 i R i
18 17 ex R R 0 x R x = 1 i R i
19 2 18 mtoi R R 0 x R x = 1 ¬ i R
20 1 19 rexlimddv R R 0 ¬ i R
21 20 ex R R 0 ¬ i R
22 21 necon4ad R i R R = 0
23 oveq2 R = 0 i R = i 0
24 sn-it0e0 i 0 = 0
25 0re 0
26 24 25 eqeltri i 0
27 23 26 eqeltrdi R = 0 i R
28 22 27 impbid1 R i R R = 0