Metamath Proof Explorer


Theorem ixpsnval

Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018)

Ref Expression
Assertion ixpsnval XVxXB=f|fFnXfXX/xB

Proof

Step Hyp Ref Expression
1 dfixp xXB=f|fFnXxXfxB
2 ralsnsg XVxXfxB[˙X/x]˙fxB
3 sbcel12 [˙X/x]˙fxBX/xfxX/xB
4 csbfv2g XVX/xfx=fX/xx
5 csbvarg XVX/xx=X
6 5 fveq2d XVfX/xx=fX
7 4 6 eqtrd XVX/xfx=fX
8 7 eleq1d XVX/xfxX/xBfXX/xB
9 3 8 bitrid XV[˙X/x]˙fxBfXX/xB
10 2 9 bitrd XVxXfxBfXX/xB
11 10 anbi2d XVfFnXxXfxBfFnXfXX/xB
12 11 abbidv XVf|fFnXxXfxB=f|fFnXfXX/xB
13 1 12 eqtrid XVxXB=f|fFnXfXX/xB