Metamath Proof Explorer


Theorem jm2.21

Description: Lemma for jm2.20nn . Express X and Y values as a binomial. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion jm2.21 A 2 N J A X rm N J + A 2 1 A Y rm N J = A X rm N + A 2 1 A Y rm N J

Proof

Step Hyp Ref Expression
1 rmbaserp A 2 A + A 2 1 +
2 1 rpcnne0d A 2 A + A 2 1 A + A 2 1 0
3 expmulz A + A 2 1 A + A 2 1 0 N J A + A 2 1 N J = A + A 2 1 N J
4 2 3 sylan A 2 N J A + A 2 1 N J = A + A 2 1 N J
5 zmulcl N J N J
6 rmxyval A 2 N J A X rm N J + A 2 1 A Y rm N J = A + A 2 1 N J
7 5 6 sylan2 A 2 N J A X rm N J + A 2 1 A Y rm N J = A + A 2 1 N J
8 rmxyval A 2 N A X rm N + A 2 1 A Y rm N = A + A 2 1 N
9 8 adantrr A 2 N J A X rm N + A 2 1 A Y rm N = A + A 2 1 N
10 9 oveq1d A 2 N J A X rm N + A 2 1 A Y rm N J = A + A 2 1 N J
11 4 7 10 3eqtr4d A 2 N J A X rm N J + A 2 1 A Y rm N J = A X rm N + A 2 1 A Y rm N J
12 11 3impb A 2 N J A X rm N J + A 2 1 A Y rm N J = A X rm N + A 2 1 A Y rm N J