Metamath Proof Explorer


Theorem jm2.22

Description: Lemma for jm2.20nn . Applying binomial theorem and taking irrational part. (Contributed by Stefan O'Rear, 26-Sep-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion jm2.22 A 2 N J 0 A Y rm N J = i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2

Proof

Step Hyp Ref Expression
1 nn0z J 0 J
2 jm2.21 A 2 N J A X rm N J + A 2 1 A Y rm N J = A X rm N + A 2 1 A Y rm N J
3 1 2 syl3an3 A 2 N J 0 A X rm N J + A 2 1 A Y rm N J = A X rm N + A 2 1 A Y rm N J
4 frmx X rm : 2 × 0
5 4 fovcl A 2 N A X rm N 0
6 5 3adant3 A 2 N J 0 A X rm N 0
7 6 nn0cnd A 2 N J 0 A X rm N
8 eluzelz A 2 A
9 zsqcl A A 2
10 peano2zm A 2 A 2 1
11 8 9 10 3syl A 2 A 2 1
12 11 3ad2ant1 A 2 N J 0 A 2 1
13 12 zcnd A 2 N J 0 A 2 1
14 13 sqrtcld A 2 N J 0 A 2 1
15 frmy Y rm : 2 ×
16 15 fovcl A 2 N A Y rm N
17 16 3adant3 A 2 N J 0 A Y rm N
18 17 zcnd A 2 N J 0 A Y rm N
19 14 18 mulcld A 2 N J 0 A 2 1 A Y rm N
20 simp3 A 2 N J 0 J 0
21 binom A X rm N A 2 1 A Y rm N J 0 A X rm N + A 2 1 A Y rm N J = i = 0 J ( J i) A X rm N J i A 2 1 A Y rm N i
22 7 19 20 21 syl3anc A 2 N J 0 A X rm N + A 2 1 A Y rm N J = i = 0 J ( J i) A X rm N J i A 2 1 A Y rm N i
23 rabnc x 0 J | 2 x x 0 J | ¬ 2 x =
24 23 a1i A 2 N J 0 x 0 J | 2 x x 0 J | ¬ 2 x =
25 rabxm 0 J = x 0 J | 2 x x 0 J | ¬ 2 x
26 25 a1i A 2 N J 0 0 J = x 0 J | 2 x x 0 J | ¬ 2 x
27 fzfid A 2 N J 0 0 J Fin
28 simpl3 A 2 N J 0 i 0 J J 0
29 elfzelz i 0 J i
30 29 adantl A 2 N J 0 i 0 J i
31 bccl J 0 i ( J i) 0
32 31 nn0zd J 0 i ( J i)
33 28 30 32 syl2anc A 2 N J 0 i 0 J ( J i)
34 33 zcnd A 2 N J 0 i 0 J ( J i)
35 6 nn0zd A 2 N J 0 A X rm N
36 35 adantr A 2 N J 0 i 0 J A X rm N
37 36 zcnd A 2 N J 0 i 0 J A X rm N
38 fznn0sub i 0 J J i 0
39 38 adantl A 2 N J 0 i 0 J J i 0
40 37 39 expcld A 2 N J 0 i 0 J A X rm N J i
41 12 adantr A 2 N J 0 i 0 J A 2 1
42 41 zcnd A 2 N J 0 i 0 J A 2 1
43 42 sqrtcld A 2 N J 0 i 0 J A 2 1
44 17 adantr A 2 N J 0 i 0 J A Y rm N
45 44 zcnd A 2 N J 0 i 0 J A Y rm N
46 43 45 mulcld A 2 N J 0 i 0 J A 2 1 A Y rm N
47 elfznn0 i 0 J i 0
48 47 adantl A 2 N J 0 i 0 J i 0
49 46 48 expcld A 2 N J 0 i 0 J A 2 1 A Y rm N i
50 40 49 mulcld A 2 N J 0 i 0 J A X rm N J i A 2 1 A Y rm N i
51 34 50 mulcld A 2 N J 0 i 0 J ( J i) A X rm N J i A 2 1 A Y rm N i
52 24 26 27 51 fsumsplit A 2 N J 0 i = 0 J ( J i) A X rm N J i A 2 1 A Y rm N i = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + i x 0 J | ¬ 2 x ( J i) A X rm N J i A 2 1 A Y rm N i
53 fzfi 0 J Fin
54 ssrab2 x 0 J | ¬ 2 x 0 J
55 ssfi 0 J Fin x 0 J | ¬ 2 x 0 J x 0 J | ¬ 2 x Fin
56 53 54 55 mp2an x 0 J | ¬ 2 x Fin
57 56 a1i A 2 N J 0 x 0 J | ¬ 2 x Fin
58 breq2 x = i 2 x 2 i
59 58 notbid x = i ¬ 2 x ¬ 2 i
60 59 elrab i x 0 J | ¬ 2 x i 0 J ¬ 2 i
61 34 adantrr A 2 N J 0 i 0 J ¬ 2 i ( J i)
62 40 adantrr A 2 N J 0 i 0 J ¬ 2 i A X rm N J i
63 zexpcl A Y rm N i 0 A Y rm N i
64 17 47 63 syl2an A 2 N J 0 i 0 J A Y rm N i
65 64 zcnd A 2 N J 0 i 0 J A Y rm N i
66 65 adantrr A 2 N J 0 i 0 J ¬ 2 i A Y rm N i
67 42 adantrr A 2 N J 0 i 0 J ¬ 2 i A 2 1
68 29 adantr i 0 J ¬ 2 i i
69 simpr i 0 J ¬ 2 i ¬ 2 i
70 1zzd i 0 J ¬ 2 i 1
71 n2dvds1 ¬ 2 1
72 71 a1i i 0 J ¬ 2 i ¬ 2 1
73 omoe i ¬ 2 i 1 ¬ 2 1 2 i 1
74 68 69 70 72 73 syl22anc i 0 J ¬ 2 i 2 i 1
75 2z 2
76 75 a1i i 0 J ¬ 2 i 2
77 2ne0 2 0
78 77 a1i i 0 J ¬ 2 i 2 0
79 peano2zm i i 1
80 29 79 syl i 0 J i 1
81 80 adantr i 0 J ¬ 2 i i 1
82 dvdsval2 2 2 0 i 1 2 i 1 i 1 2
83 76 78 81 82 syl3anc i 0 J ¬ 2 i 2 i 1 i 1 2
84 74 83 mpbid i 0 J ¬ 2 i i 1 2
85 80 zred i 0 J i 1
86 85 adantr i 0 J ¬ 2 i i 1
87 dvds0 2 2 0
88 75 87 ax-mp 2 0
89 breq2 i = 0 2 i 2 0
90 88 89 mpbiri i = 0 2 i
91 90 con3i ¬ 2 i ¬ i = 0
92 91 adantl i 0 J ¬ 2 i ¬ i = 0
93 47 adantr i 0 J ¬ 2 i i 0
94 elnn0 i 0 i i = 0
95 93 94 sylib i 0 J ¬ 2 i i i = 0
96 orel2 ¬ i = 0 i i = 0 i
97 92 95 96 sylc i 0 J ¬ 2 i i
98 nnm1nn0 i i 1 0
99 97 98 syl i 0 J ¬ 2 i i 1 0
100 99 nn0ge0d i 0 J ¬ 2 i 0 i 1
101 2re 2
102 101 a1i i 0 J ¬ 2 i 2
103 2pos 0 < 2
104 103 a1i i 0 J ¬ 2 i 0 < 2
105 divge0 i 1 0 i 1 2 0 < 2 0 i 1 2
106 86 100 102 104 105 syl22anc i 0 J ¬ 2 i 0 i 1 2
107 elnn0z i 1 2 0 i 1 2 0 i 1 2
108 84 106 107 sylanbrc i 0 J ¬ 2 i i 1 2 0
109 108 adantl A 2 N J 0 i 0 J ¬ 2 i i 1 2 0
110 67 109 expcld A 2 N J 0 i 0 J ¬ 2 i A 2 1 i 1 2
111 66 110 mulcld A 2 N J 0 i 0 J ¬ 2 i A Y rm N i A 2 1 i 1 2
112 62 111 mulcld A 2 N J 0 i 0 J ¬ 2 i A X rm N J i A Y rm N i A 2 1 i 1 2
113 61 112 mulcld A 2 N J 0 i 0 J ¬ 2 i ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
114 60 113 sylan2b A 2 N J 0 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
115 57 14 114 fsummulc2 A 2 N J 0 A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 = i x 0 J | ¬ 2 x A 2 1 ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
116 43 adantrr A 2 N J 0 i 0 J ¬ 2 i A 2 1
117 116 61 112 mul12d A 2 N J 0 i 0 J ¬ 2 i A 2 1 ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 = ( J i) A 2 1 A X rm N J i A Y rm N i A 2 1 i 1 2
118 116 62 111 mul12d A 2 N J 0 i 0 J ¬ 2 i A 2 1 A X rm N J i A Y rm N i A 2 1 i 1 2 = A X rm N J i A 2 1 A Y rm N i A 2 1 i 1 2
119 43 48 expcld A 2 N J 0 i 0 J A 2 1 i
120 119 adantrr A 2 N J 0 i 0 J ¬ 2 i A 2 1 i
121 66 120 mulcomd A 2 N J 0 i 0 J ¬ 2 i A Y rm N i A 2 1 i = A 2 1 i A Y rm N i
122 116 66 110 mul12d A 2 N J 0 i 0 J ¬ 2 i A 2 1 A Y rm N i A 2 1 i 1 2 = A Y rm N i A 2 1 A 2 1 i 1 2
123 2nn0 2 0
124 123 a1i A 2 N J 0 i 0 J ¬ 2 i 2 0
125 116 109 124 expmuld A 2 N J 0 i 0 J ¬ 2 i A 2 1 2 i 1 2 = A 2 1 2 i 1 2
126 80 zcnd i 0 J i 1
127 126 ad2antrl A 2 N J 0 i 0 J ¬ 2 i i 1
128 2cnd A 2 N J 0 i 0 J ¬ 2 i 2
129 77 a1i A 2 N J 0 i 0 J ¬ 2 i 2 0
130 127 128 129 divcan2d A 2 N J 0 i 0 J ¬ 2 i 2 i 1 2 = i 1
131 130 oveq2d A 2 N J 0 i 0 J ¬ 2 i A 2 1 2 i 1 2 = A 2 1 i 1
132 67 sqsqrtd A 2 N J 0 i 0 J ¬ 2 i A 2 1 2 = A 2 1
133 132 oveq1d A 2 N J 0 i 0 J ¬ 2 i A 2 1 2 i 1 2 = A 2 1 i 1 2
134 125 131 133 3eqtr3rd A 2 N J 0 i 0 J ¬ 2 i A 2 1 i 1 2 = A 2 1 i 1
135 134 oveq1d A 2 N J 0 i 0 J ¬ 2 i A 2 1 i 1 2 A 2 1 = A 2 1 i 1 A 2 1
136 116 110 mulcomd A 2 N J 0 i 0 J ¬ 2 i A 2 1 A 2 1 i 1 2 = A 2 1 i 1 2 A 2 1
137 97 adantl A 2 N J 0 i 0 J ¬ 2 i i
138 expm1t A 2 1 i A 2 1 i = A 2 1 i 1 A 2 1
139 116 137 138 syl2anc A 2 N J 0 i 0 J ¬ 2 i A 2 1 i = A 2 1 i 1 A 2 1
140 135 136 139 3eqtr4d A 2 N J 0 i 0 J ¬ 2 i A 2 1 A 2 1 i 1 2 = A 2 1 i
141 140 oveq2d A 2 N J 0 i 0 J ¬ 2 i A Y rm N i A 2 1 A 2 1 i 1 2 = A Y rm N i A 2 1 i
142 122 141 eqtrd A 2 N J 0 i 0 J ¬ 2 i A 2 1 A Y rm N i A 2 1 i 1 2 = A Y rm N i A 2 1 i
143 43 45 48 mulexpd A 2 N J 0 i 0 J A 2 1 A Y rm N i = A 2 1 i A Y rm N i
144 143 adantrr A 2 N J 0 i 0 J ¬ 2 i A 2 1 A Y rm N i = A 2 1 i A Y rm N i
145 121 142 144 3eqtr4d A 2 N J 0 i 0 J ¬ 2 i A 2 1 A Y rm N i A 2 1 i 1 2 = A 2 1 A Y rm N i
146 145 oveq2d A 2 N J 0 i 0 J ¬ 2 i A X rm N J i A 2 1 A Y rm N i A 2 1 i 1 2 = A X rm N J i A 2 1 A Y rm N i
147 118 146 eqtrd A 2 N J 0 i 0 J ¬ 2 i A 2 1 A X rm N J i A Y rm N i A 2 1 i 1 2 = A X rm N J i A 2 1 A Y rm N i
148 147 oveq2d A 2 N J 0 i 0 J ¬ 2 i ( J i) A 2 1 A X rm N J i A Y rm N i A 2 1 i 1 2 = ( J i) A X rm N J i A 2 1 A Y rm N i
149 117 148 eqtrd A 2 N J 0 i 0 J ¬ 2 i A 2 1 ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 = ( J i) A X rm N J i A 2 1 A Y rm N i
150 60 149 sylan2b A 2 N J 0 i x 0 J | ¬ 2 x A 2 1 ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 = ( J i) A X rm N J i A 2 1 A Y rm N i
151 150 sumeq2dv A 2 N J 0 i x 0 J | ¬ 2 x A 2 1 ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 = i x 0 J | ¬ 2 x ( J i) A X rm N J i A 2 1 A Y rm N i
152 115 151 eqtr2d A 2 N J 0 i x 0 J | ¬ 2 x ( J i) A X rm N J i A 2 1 A Y rm N i = A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
153 152 oveq2d A 2 N J 0 i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + i x 0 J | ¬ 2 x ( J i) A X rm N J i A 2 1 A Y rm N i = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
154 52 153 eqtrd A 2 N J 0 i = 0 J ( J i) A X rm N J i A 2 1 A Y rm N i = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
155 3 22 154 3eqtrd A 2 N J 0 A X rm N J + A 2 1 A Y rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
156 rmspecsqrtnq A 2 A 2 1
157 156 3ad2ant1 A 2 N J 0 A 2 1
158 nn0ssq 0
159 simp1 A 2 N J 0 A 2
160 simp2 A 2 N J 0 N
161 1 3ad2ant3 A 2 N J 0 J
162 160 161 zmulcld A 2 N J 0 N J
163 4 fovcl A 2 N J A X rm N J 0
164 159 162 163 syl2anc A 2 N J 0 A X rm N J 0
165 158 164 sseldi A 2 N J 0 A X rm N J
166 zssq
167 15 fovcl A 2 N J A Y rm N J
168 159 162 167 syl2anc A 2 N J 0 A Y rm N J
169 166 168 sseldi A 2 N J 0 A Y rm N J
170 ssrab2 x 0 J | 2 x 0 J
171 ssfi 0 J Fin x 0 J | 2 x 0 J x 0 J | 2 x Fin
172 53 170 171 mp2an x 0 J | 2 x Fin
173 172 a1i A 2 N J 0 x 0 J | 2 x Fin
174 58 elrab i x 0 J | 2 x i 0 J 2 i
175 33 adantrr A 2 N J 0 i 0 J 2 i ( J i)
176 zexpcl A X rm N J i 0 A X rm N J i
177 36 39 176 syl2anc A 2 N J 0 i 0 J A X rm N J i
178 177 adantrr A 2 N J 0 i 0 J 2 i A X rm N J i
179 43 adantrr A 2 N J 0 i 0 J 2 i A 2 1
180 45 adantrr A 2 N J 0 i 0 J 2 i A Y rm N
181 47 ad2antrl A 2 N J 0 i 0 J 2 i i 0
182 179 180 181 mulexpd A 2 N J 0 i 0 J 2 i A 2 1 A Y rm N i = A 2 1 i A Y rm N i
183 29 zcnd i 0 J i
184 183 adantl A 2 N J 0 i 0 J i
185 2cnd A 2 N J 0 i 0 J 2
186 77 a1i A 2 N J 0 i 0 J 2 0
187 184 185 186 divcan2d A 2 N J 0 i 0 J 2 i 2 = i
188 187 eqcomd A 2 N J 0 i 0 J i = 2 i 2
189 188 adantrr A 2 N J 0 i 0 J 2 i i = 2 i 2
190 189 oveq2d A 2 N J 0 i 0 J 2 i A 2 1 i = A 2 1 2 i 2
191 75 a1i i 0 2
192 77 a1i i 0 2 0
193 nn0z i 0 i
194 dvdsval2 2 2 0 i 2 i i 2
195 191 192 193 194 syl3anc i 0 2 i i 2
196 195 biimpa i 0 2 i i 2
197 nn0re i 0 i
198 197 adantr i 0 2 i i
199 nn0ge0 i 0 0 i
200 199 adantr i 0 2 i 0 i
201 101 a1i i 0 2 i 2
202 103 a1i i 0 2 i 0 < 2
203 divge0 i 0 i 2 0 < 2 0 i 2
204 198 200 201 202 203 syl22anc i 0 2 i 0 i 2
205 elnn0z i 2 0 i 2 0 i 2
206 196 204 205 sylanbrc i 0 2 i i 2 0
207 47 206 sylan i 0 J 2 i i 2 0
208 207 adantl A 2 N J 0 i 0 J 2 i i 2 0
209 123 a1i A 2 N J 0 i 0 J 2 i 2 0
210 179 208 209 expmuld A 2 N J 0 i 0 J 2 i A 2 1 2 i 2 = A 2 1 2 i 2
211 42 adantrr A 2 N J 0 i 0 J 2 i A 2 1
212 211 sqsqrtd A 2 N J 0 i 0 J 2 i A 2 1 2 = A 2 1
213 212 oveq1d A 2 N J 0 i 0 J 2 i A 2 1 2 i 2 = A 2 1 i 2
214 190 210 213 3eqtrd A 2 N J 0 i 0 J 2 i A 2 1 i = A 2 1 i 2
215 214 oveq1d A 2 N J 0 i 0 J 2 i A 2 1 i A Y rm N i = A 2 1 i 2 A Y rm N i
216 182 215 eqtrd A 2 N J 0 i 0 J 2 i A 2 1 A Y rm N i = A 2 1 i 2 A Y rm N i
217 zexpcl A 2 1 i 2 0 A 2 1 i 2
218 12 207 217 syl2an A 2 N J 0 i 0 J 2 i A 2 1 i 2
219 64 adantrr A 2 N J 0 i 0 J 2 i A Y rm N i
220 218 219 zmulcld A 2 N J 0 i 0 J 2 i A 2 1 i 2 A Y rm N i
221 216 220 eqeltrd A 2 N J 0 i 0 J 2 i A 2 1 A Y rm N i
222 178 221 zmulcld A 2 N J 0 i 0 J 2 i A X rm N J i A 2 1 A Y rm N i
223 175 222 zmulcld A 2 N J 0 i 0 J 2 i ( J i) A X rm N J i A 2 1 A Y rm N i
224 174 223 sylan2b A 2 N J 0 i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i
225 173 224 fsumzcl A 2 N J 0 i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i
226 166 225 sseldi A 2 N J 0 i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i
227 33 adantrr A 2 N J 0 i 0 J ¬ 2 i ( J i)
228 177 adantrr A 2 N J 0 i 0 J ¬ 2 i A X rm N J i
229 64 adantrr A 2 N J 0 i 0 J ¬ 2 i A Y rm N i
230 zexpcl A 2 1 i 1 2 0 A 2 1 i 1 2
231 12 108 230 syl2an A 2 N J 0 i 0 J ¬ 2 i A 2 1 i 1 2
232 229 231 zmulcld A 2 N J 0 i 0 J ¬ 2 i A Y rm N i A 2 1 i 1 2
233 228 232 zmulcld A 2 N J 0 i 0 J ¬ 2 i A X rm N J i A Y rm N i A 2 1 i 1 2
234 227 233 zmulcld A 2 N J 0 i 0 J ¬ 2 i ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
235 60 234 sylan2b A 2 N J 0 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
236 57 235 fsumzcl A 2 N J 0 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
237 166 236 sseldi A 2 N J 0 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
238 qirropth A 2 1 A X rm N J A Y rm N J i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 A X rm N J + A 2 1 A Y rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 A X rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i A Y rm N J = i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
239 157 165 169 226 237 238 syl122anc A 2 N J 0 A X rm N J + A 2 1 A Y rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i + A 2 1 i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2 A X rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i A Y rm N J = i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
240 155 239 mpbid A 2 N J 0 A X rm N J = i x 0 J | 2 x ( J i) A X rm N J i A 2 1 A Y rm N i A Y rm N J = i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2
241 240 simprd A 2 N J 0 A Y rm N J = i x 0 J | ¬ 2 x ( J i) A X rm N J i A Y rm N i A 2 1 i 1 2