Metamath Proof Explorer


Theorem jm2.23

Description: Lemma for jm2.20nn . Truncate binomial expansion p-adicly. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion jm2.23 A 2 N J A Y rm N 3 A Y rm N J J A X rm N J 1 A Y rm N

Proof

Step Hyp Ref Expression
1 fzfi 3 J Fin
2 ssrab2 b 3 J | ¬ 2 b 3 J
3 ssfi 3 J Fin b 3 J | ¬ 2 b 3 J b 3 J | ¬ 2 b Fin
4 1 2 3 mp2an b 3 J | ¬ 2 b Fin
5 4 a1i A 2 N J b 3 J | ¬ 2 b Fin
6 nnnn0 J J 0
7 6 3ad2ant3 A 2 N J J 0
8 2 sseli a b 3 J | ¬ 2 b a 3 J
9 elfzelz a 3 J a
10 8 9 syl a b 3 J | ¬ 2 b a
11 bccl J 0 a ( J a) 0
12 7 10 11 syl2an A 2 N J a b 3 J | ¬ 2 b ( J a) 0
13 12 nn0zd A 2 N J a b 3 J | ¬ 2 b ( J a)
14 simpl1 A 2 N J a b 3 J | ¬ 2 b A 2
15 simpl2 A 2 N J a b 3 J | ¬ 2 b N
16 frmx X rm : 2 × 0
17 16 fovcl A 2 N A X rm N 0
18 14 15 17 syl2anc A 2 N J a b 3 J | ¬ 2 b A X rm N 0
19 18 nn0zd A 2 N J a b 3 J | ¬ 2 b A X rm N
20 8 adantl A 2 N J a b 3 J | ¬ 2 b a 3 J
21 fznn0sub a 3 J J a 0
22 20 21 syl A 2 N J a b 3 J | ¬ 2 b J a 0
23 zexpcl A X rm N J a 0 A X rm N J a
24 19 22 23 syl2anc A 2 N J a b 3 J | ¬ 2 b A X rm N J a
25 rmspecnonsq A 2 A 2 1
26 25 eldifad A 2 A 2 1
27 26 nnzd A 2 A 2 1
28 27 3ad2ant1 A 2 N J A 2 1
29 breq2 b = a 2 b 2 a
30 29 notbid b = a ¬ 2 b ¬ 2 a
31 30 elrab a b 3 J | ¬ 2 b a 3 J ¬ 2 a
32 31 simprbi a b 3 J | ¬ 2 b ¬ 2 a
33 1zzd a b 3 J | ¬ 2 b 1
34 n2dvds1 ¬ 2 1
35 34 a1i a b 3 J | ¬ 2 b ¬ 2 1
36 omoe a ¬ 2 a 1 ¬ 2 1 2 a 1
37 10 32 33 35 36 syl22anc a b 3 J | ¬ 2 b 2 a 1
38 2z 2
39 38 a1i a b 3 J | ¬ 2 b 2
40 2ne0 2 0
41 40 a1i a b 3 J | ¬ 2 b 2 0
42 peano2zm a a 1
43 10 42 syl a b 3 J | ¬ 2 b a 1
44 dvdsval2 2 2 0 a 1 2 a 1 a 1 2
45 39 41 43 44 syl3anc a b 3 J | ¬ 2 b 2 a 1 a 1 2
46 37 45 mpbid a b 3 J | ¬ 2 b a 1 2
47 43 zred a b 3 J | ¬ 2 b a 1
48 0red a 3 J 0
49 3re 3
50 49 a1i a 3 J 3
51 9 zred a 3 J a
52 3pos 0 < 3
53 52 a1i a 3 J 0 < 3
54 elfzle1 a 3 J 3 a
55 48 50 51 53 54 ltletrd a 3 J 0 < a
56 elnnz a a 0 < a
57 9 55 56 sylanbrc a 3 J a
58 nnm1nn0 a a 1 0
59 57 58 syl a 3 J a 1 0
60 59 nn0ge0d a 3 J 0 a 1
61 8 60 syl a b 3 J | ¬ 2 b 0 a 1
62 2re 2
63 62 a1i a b 3 J | ¬ 2 b 2
64 2pos 0 < 2
65 64 a1i a b 3 J | ¬ 2 b 0 < 2
66 divge0 a 1 0 a 1 2 0 < 2 0 a 1 2
67 47 61 63 65 66 syl22anc a b 3 J | ¬ 2 b 0 a 1 2
68 elnn0z a 1 2 0 a 1 2 0 a 1 2
69 46 67 68 sylanbrc a b 3 J | ¬ 2 b a 1 2 0
70 zexpcl A 2 1 a 1 2 0 A 2 1 a 1 2
71 28 69 70 syl2an A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2
72 frmy Y rm : 2 ×
73 72 fovcl A 2 N A Y rm N
74 14 15 73 syl2anc A 2 N J a b 3 J | ¬ 2 b A Y rm N
75 elfzel1 a 3 J 3
76 9 75 zsubcld a 3 J a 3
77 subge0 a 3 0 a 3 3 a
78 51 49 77 sylancl a 3 J 0 a 3 3 a
79 54 78 mpbird a 3 J 0 a 3
80 elnn0z a 3 0 a 3 0 a 3
81 76 79 80 sylanbrc a 3 J a 3 0
82 8 81 syl a b 3 J | ¬ 2 b a 3 0
83 82 adantl A 2 N J a b 3 J | ¬ 2 b a 3 0
84 zexpcl A Y rm N a 3 0 A Y rm N a 3
85 74 83 84 syl2anc A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3
86 71 85 zmulcld A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3
87 24 86 zmulcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3
88 13 87 zmulcld A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
89 5 88 fsumzcl A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
90 73 3adant3 A 2 N J A Y rm N
91 3nn0 3 0
92 zexpcl A Y rm N 3 0 A Y rm N 3
93 90 91 92 sylancl A 2 N J A Y rm N 3
94 dvdsmul2 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 A Y rm N 3 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
95 89 93 94 syl2anc A 2 N J A Y rm N 3 a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
96 jm2.22 A 2 N J 0 A Y rm N J = a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
97 6 96 syl3an3 A 2 N J A Y rm N J = a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
98 1lt3 1 < 3
99 1re 1
100 99 49 ltnlei 1 < 3 ¬ 3 1
101 98 100 mpbi ¬ 3 1
102 elfzle1 1 3 J 3 1
103 101 102 mto ¬ 1 3 J
104 103 a1i A 2 N J ¬ 1 3 J
105 104 intnanrd A 2 N J ¬ 1 3 J ¬ 2 1
106 breq2 b = 1 2 b 2 1
107 106 notbid b = 1 ¬ 2 b ¬ 2 1
108 107 elrab 1 b 3 J | ¬ 2 b 1 3 J ¬ 2 1
109 105 108 sylnibr A 2 N J ¬ 1 b 3 J | ¬ 2 b
110 disjsn b 3 J | ¬ 2 b 1 = ¬ 1 b 3 J | ¬ 2 b
111 109 110 sylibr A 2 N J b 3 J | ¬ 2 b 1 =
112 simpr A 2 N J a 0 J ¬ 2 a a = 1 a = 1
113 112 olcd A 2 N J a 0 J ¬ 2 a a = 1 a 3 J ¬ 2 a a = 1
114 elfznn0 a 0 J a 0
115 114 adantr a 0 J ¬ 2 a a 0
116 115 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a 0
117 simplrr A 2 N J a 0 J ¬ 2 a a 1 ¬ 2 a
118 simpr A 2 N J a 0 J ¬ 2 a a 1 a 1
119 elnn1uz2 a a = 1 a 2
120 df-ne a 1 ¬ a = 1
121 120 biimpi a 1 ¬ a = 1
122 121 3ad2ant3 a 0 ¬ 2 a a 1 ¬ a = 1
123 122 pm2.21d a 0 ¬ 2 a a 1 a = 1 3 a
124 123 imp a 0 ¬ 2 a a 1 a = 1 3 a
125 uzp1 a 2 a = 2 a 2 + 1
126 1z 1
127 dvdsmul1 2 1 2 2 1
128 38 126 127 mp2an 2 2 1
129 2t1e2 2 1 = 2
130 128 129 breqtri 2 2
131 breq2 a = 2 2 a 2 2
132 131 adantl a 0 ¬ 2 a a 1 a = 2 2 a 2 2
133 130 132 mpbiri a 0 ¬ 2 a a 1 a = 2 2 a
134 simpl2 a 0 ¬ 2 a a 1 a = 2 ¬ 2 a
135 133 134 pm2.21dd a 0 ¬ 2 a a 1 a = 2 3 a
136 eluzle a 3 3 a
137 2p1e3 2 + 1 = 3
138 137 fveq2i 2 + 1 = 3
139 136 138 eleq2s a 2 + 1 3 a
140 139 adantl a 0 ¬ 2 a a 1 a 2 + 1 3 a
141 135 140 jaodan a 0 ¬ 2 a a 1 a = 2 a 2 + 1 3 a
142 125 141 sylan2 a 0 ¬ 2 a a 1 a 2 3 a
143 124 142 jaodan a 0 ¬ 2 a a 1 a = 1 a 2 3 a
144 119 143 sylan2b a 0 ¬ 2 a a 1 a 3 a
145 dvds0 2 2 0
146 38 145 ax-mp 2 0
147 breq2 a = 0 2 a 2 0
148 146 147 mpbiri a = 0 2 a
149 148 adantl a 0 ¬ 2 a a 1 a = 0 2 a
150 simpl2 a 0 ¬ 2 a a 1 a = 0 ¬ 2 a
151 149 150 pm2.21dd a 0 ¬ 2 a a 1 a = 0 3 a
152 elnn0 a 0 a a = 0
153 152 biimpi a 0 a a = 0
154 153 3ad2ant1 a 0 ¬ 2 a a 1 a a = 0
155 144 151 154 mpjaodan a 0 ¬ 2 a a 1 3 a
156 116 117 118 155 syl3anc A 2 N J a 0 J ¬ 2 a a 1 3 a
157 elfzle2 a 0 J a J
158 157 adantr a 0 J ¬ 2 a a J
159 158 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a J
160 elfzelz a 0 J a
161 160 adantr a 0 J ¬ 2 a a
162 161 ad2antlr A 2 N J a 0 J ¬ 2 a a 1 a
163 3z 3
164 163 a1i A 2 N J a 0 J ¬ 2 a a 1 3
165 nnz J J
166 165 3ad2ant3 A 2 N J J
167 166 ad2antrr A 2 N J a 0 J ¬ 2 a a 1 J
168 elfz a 3 J a 3 J 3 a a J
169 162 164 167 168 syl3anc A 2 N J a 0 J ¬ 2 a a 1 a 3 J 3 a a J
170 156 159 169 mpbir2and A 2 N J a 0 J ¬ 2 a a 1 a 3 J
171 170 117 jca A 2 N J a 0 J ¬ 2 a a 1 a 3 J ¬ 2 a
172 171 orcd A 2 N J a 0 J ¬ 2 a a 1 a 3 J ¬ 2 a a = 1
173 113 172 pm2.61dane A 2 N J a 0 J ¬ 2 a a 3 J ¬ 2 a a = 1
174 nn0uz 0 = 0
175 91 174 eleqtri 3 0
176 fzss1 3 0 3 J 0 J
177 175 176 ax-mp 3 J 0 J
178 177 sseli a 3 J a 0 J
179 178 anim1i a 3 J ¬ 2 a a 0 J ¬ 2 a
180 179 adantl A 2 N J a 3 J ¬ 2 a a 0 J ¬ 2 a
181 0le1 0 1
182 181 a1i A 2 N J a = 1 0 1
183 nnge1 J 1 J
184 183 3ad2ant3 A 2 N J 1 J
185 184 adantr A 2 N J a = 1 1 J
186 1zzd A 2 N J a = 1 1
187 0zd A 2 N J a = 1 0
188 166 adantr A 2 N J a = 1 J
189 elfz 1 0 J 1 0 J 0 1 1 J
190 186 187 188 189 syl3anc A 2 N J a = 1 1 0 J 0 1 1 J
191 182 185 190 mpbir2and A 2 N J a = 1 1 0 J
192 34 a1i A 2 N J a = 1 ¬ 2 1
193 eleq1 a = 1 a 0 J 1 0 J
194 breq2 a = 1 2 a 2 1
195 194 notbid a = 1 ¬ 2 a ¬ 2 1
196 193 195 anbi12d a = 1 a 0 J ¬ 2 a 1 0 J ¬ 2 1
197 196 adantl A 2 N J a = 1 a 0 J ¬ 2 a 1 0 J ¬ 2 1
198 191 192 197 mpbir2and A 2 N J a = 1 a 0 J ¬ 2 a
199 180 198 jaodan A 2 N J a 3 J ¬ 2 a a = 1 a 0 J ¬ 2 a
200 173 199 impbida A 2 N J a 0 J ¬ 2 a a 3 J ¬ 2 a a = 1
201 30 elrab a b 0 J | ¬ 2 b a 0 J ¬ 2 a
202 elun a b 3 J | ¬ 2 b 1 a b 3 J | ¬ 2 b a 1
203 velsn a 1 a = 1
204 31 203 orbi12i a b 3 J | ¬ 2 b a 1 a 3 J ¬ 2 a a = 1
205 202 204 bitri a b 3 J | ¬ 2 b 1 a 3 J ¬ 2 a a = 1
206 200 201 205 3bitr4g A 2 N J a b 0 J | ¬ 2 b a b 3 J | ¬ 2 b 1
207 206 eqrdv A 2 N J b 0 J | ¬ 2 b = b 3 J | ¬ 2 b 1
208 fzfi 0 J Fin
209 ssrab2 b 0 J | ¬ 2 b 0 J
210 ssfi 0 J Fin b 0 J | ¬ 2 b 0 J b 0 J | ¬ 2 b Fin
211 208 209 210 mp2an b 0 J | ¬ 2 b Fin
212 211 a1i A 2 N J b 0 J | ¬ 2 b Fin
213 209 sseli a b 0 J | ¬ 2 b a 0 J
214 213 160 syl a b 0 J | ¬ 2 b a
215 7 214 11 syl2an A 2 N J a b 0 J | ¬ 2 b ( J a) 0
216 215 nn0cnd A 2 N J a b 0 J | ¬ 2 b ( J a)
217 17 3adant3 A 2 N J A X rm N 0
218 217 nn0cnd A 2 N J A X rm N
219 218 adantr A 2 N J a b 0 J | ¬ 2 b A X rm N
220 213 adantl A 2 N J a b 0 J | ¬ 2 b a 0 J
221 fznn0sub a 0 J J a 0
222 220 221 syl A 2 N J a b 0 J | ¬ 2 b J a 0
223 219 222 expcld A 2 N J a b 0 J | ¬ 2 b A X rm N J a
224 90 zcnd A 2 N J A Y rm N
225 213 114 syl a b 0 J | ¬ 2 b a 0
226 expcl A Y rm N a 0 A Y rm N a
227 224 225 226 syl2an A 2 N J a b 0 J | ¬ 2 b A Y rm N a
228 rmspecpos A 2 A 2 1 +
229 228 rpcnd A 2 A 2 1
230 229 3ad2ant1 A 2 N J A 2 1
231 201 simprbi a b 0 J | ¬ 2 b ¬ 2 a
232 1zzd a b 0 J | ¬ 2 b 1
233 34 a1i a b 0 J | ¬ 2 b ¬ 2 1
234 214 231 232 233 36 syl22anc a b 0 J | ¬ 2 b 2 a 1
235 38 a1i a b 0 J | ¬ 2 b 2
236 40 a1i a b 0 J | ¬ 2 b 2 0
237 214 42 syl a b 0 J | ¬ 2 b a 1
238 235 236 237 44 syl3anc a b 0 J | ¬ 2 b 2 a 1 a 1 2
239 234 238 mpbid a b 0 J | ¬ 2 b a 1 2
240 237 zred a b 0 J | ¬ 2 b a 1
241 148 a1i a 0 J a = 0 2 a
242 241 con3dimp a 0 J ¬ 2 a ¬ a = 0
243 201 242 sylbi a b 0 J | ¬ 2 b ¬ a = 0
244 225 153 syl a b 0 J | ¬ 2 b a a = 0
245 orel2 ¬ a = 0 a a = 0 a
246 243 244 245 sylc a b 0 J | ¬ 2 b a
247 246 58 syl a b 0 J | ¬ 2 b a 1 0
248 247 nn0ge0d a b 0 J | ¬ 2 b 0 a 1
249 62 a1i a b 0 J | ¬ 2 b 2
250 64 a1i a b 0 J | ¬ 2 b 0 < 2
251 240 248 249 250 66 syl22anc a b 0 J | ¬ 2 b 0 a 1 2
252 239 251 68 sylanbrc a b 0 J | ¬ 2 b a 1 2 0
253 expcl A 2 1 a 1 2 0 A 2 1 a 1 2
254 230 252 253 syl2an A 2 N J a b 0 J | ¬ 2 b A 2 1 a 1 2
255 227 254 mulcld A 2 N J a b 0 J | ¬ 2 b A Y rm N a A 2 1 a 1 2
256 223 255 mulcld A 2 N J a b 0 J | ¬ 2 b A X rm N J a A Y rm N a A 2 1 a 1 2
257 216 256 mulcld A 2 N J a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
258 111 207 212 257 fsumsplit A 2 N J a b 0 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 + a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
259 expcl A Y rm N 3 0 A Y rm N 3
260 224 91 259 sylancl A 2 N J A Y rm N 3
261 88 zcnd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
262 5 260 261 fsummulc1 A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
263 12 nn0cnd A 2 N J a b 3 J | ¬ 2 b ( J a)
264 218 adantr A 2 N J a b 3 J | ¬ 2 b A X rm N
265 264 22 expcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a
266 230 69 253 syl2an A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2
267 expcl A Y rm N a 3 0 A Y rm N a 3
268 224 82 267 syl2an A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3
269 266 268 mulcld A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3
270 265 269 mulcld A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3
271 260 adantr A 2 N J a b 3 J | ¬ 2 b A Y rm N 3
272 263 270 271 mulassd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
273 265 269 271 mulassd A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
274 266 268 271 mulassd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
275 268 271 mulcld A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3
276 266 275 mulcomd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A Y rm N a 3 A Y rm N 3 A 2 1 a 1 2
277 224 adantr A 2 N J a b 3 J | ¬ 2 b A Y rm N
278 91 a1i A 2 N J a b 3 J | ¬ 2 b 3 0
279 277 278 83 expaddd A 2 N J a b 3 J | ¬ 2 b A Y rm N a - 3 + 3 = A Y rm N a 3 A Y rm N 3
280 10 adantl A 2 N J a b 3 J | ¬ 2 b a
281 280 zcnd A 2 N J a b 3 J | ¬ 2 b a
282 3cn 3
283 npcan a 3 a - 3 + 3 = a
284 281 282 283 sylancl A 2 N J a b 3 J | ¬ 2 b a - 3 + 3 = a
285 284 oveq2d A 2 N J a b 3 J | ¬ 2 b A Y rm N a - 3 + 3 = A Y rm N a
286 279 285 eqtr3d A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3 = A Y rm N a
287 286 oveq1d A 2 N J a b 3 J | ¬ 2 b A Y rm N a 3 A Y rm N 3 A 2 1 a 1 2 = A Y rm N a A 2 1 a 1 2
288 274 276 287 3eqtrd A 2 N J a b 3 J | ¬ 2 b A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A Y rm N a A 2 1 a 1 2
289 288 oveq2d A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A Y rm N a A 2 1 a 1 2
290 273 289 eqtrd A 2 N J a b 3 J | ¬ 2 b A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = A X rm N J a A Y rm N a A 2 1 a 1 2
291 290 oveq2d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
292 272 291 eqtrd A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
293 292 sumeq2dv A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2
294 262 293 eqtr2d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
295 1nn 1
296 bccl J 0 1 ( J 1 ) 0
297 6 126 296 sylancl J ( J 1 ) 0
298 297 nn0cnd J ( J 1 )
299 298 3ad2ant3 A 2 N J ( J 1 )
300 nnm1nn0 J J 1 0
301 300 3ad2ant3 A 2 N J J 1 0
302 218 301 expcld A 2 N J A X rm N J 1
303 1nn0 1 0
304 expcl A Y rm N 1 0 A Y rm N 1
305 224 303 304 sylancl A 2 N J A Y rm N 1
306 1m1e0 1 1 = 0
307 306 oveq1i 1 1 2 = 0 2
308 2cn 2
309 308 40 div0i 0 2 = 0
310 307 309 eqtri 1 1 2 = 0
311 0nn0 0 0
312 310 311 eqeltri 1 1 2 0
313 expcl A 2 1 1 1 2 0 A 2 1 1 1 2
314 230 312 313 sylancl A 2 N J A 2 1 1 1 2
315 305 314 mulcld A 2 N J A Y rm N 1 A 2 1 1 1 2
316 302 315 mulcld A 2 N J A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
317 299 316 mulcld A 2 N J ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
318 oveq2 a = 1 ( J a) = ( J 1 )
319 oveq2 a = 1 J a = J 1
320 319 oveq2d a = 1 A X rm N J a = A X rm N J 1
321 oveq2 a = 1 A Y rm N a = A Y rm N 1
322 oveq1 a = 1 a 1 = 1 1
323 322 oveq1d a = 1 a 1 2 = 1 1 2
324 323 oveq2d a = 1 A 2 1 a 1 2 = A 2 1 1 1 2
325 321 324 oveq12d a = 1 A Y rm N a A 2 1 a 1 2 = A Y rm N 1 A 2 1 1 1 2
326 320 325 oveq12d a = 1 A X rm N J a A Y rm N a A 2 1 a 1 2 = A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
327 318 326 oveq12d a = 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
328 327 sumsn 1 ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
329 295 317 328 sylancr A 2 N J a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
330 294 329 oveq12d A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 + a 1 ( J a) A X rm N J a A Y rm N a A 2 1 a 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
331 97 258 330 3eqtrd A 2 N J A Y rm N J = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
332 bcn1 J 0 ( J 1 ) = J
333 7 332 syl A 2 N J ( J 1 ) = J
334 333 eqcomd A 2 N J J = ( J 1 )
335 224 exp1d A 2 N J A Y rm N 1 = A Y rm N
336 310 a1i A 2 N J 1 1 2 = 0
337 336 oveq2d A 2 N J A 2 1 1 1 2 = A 2 1 0
338 230 exp0d A 2 N J A 2 1 0 = 1
339 337 338 eqtrd A 2 N J A 2 1 1 1 2 = 1
340 335 339 oveq12d A 2 N J A Y rm N 1 A 2 1 1 1 2 = A Y rm N 1
341 224 mulid1d A 2 N J A Y rm N 1 = A Y rm N
342 340 341 eqtr2d A 2 N J A Y rm N = A Y rm N 1 A 2 1 1 1 2
343 342 oveq2d A 2 N J A X rm N J 1 A Y rm N = A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
344 334 343 oveq12d A 2 N J J A X rm N J 1 A Y rm N = ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
345 331 344 oveq12d A 2 N J A Y rm N J J A X rm N J 1 A Y rm N = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 - ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2
346 5 261 fsumcl A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3
347 346 260 mulcld A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
348 347 317 pncand A 2 N J a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3 + ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 - ( J 1 ) A X rm N J 1 A Y rm N 1 A 2 1 1 1 2 = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
349 345 348 eqtrd A 2 N J A Y rm N J J A X rm N J 1 A Y rm N = a b 3 J | ¬ 2 b ( J a) A X rm N J a A 2 1 a 1 2 A Y rm N a 3 A Y rm N 3
350 95 349 breqtrrd A 2 N J A Y rm N 3 A Y rm N J J A X rm N J 1 A Y rm N