Metamath Proof Explorer


Theorem kbmul

Description: Multiplication property of outer product. (Contributed by NM, 31-May-2006) (New usage is discouraged.)

Ref Expression
Assertion kbmul ABCABketbraC=BketbraAC

Proof

Step Hyp Ref Expression
1 hvmulcl ABAB
2 kbfval ABCABketbraC=xxihCAB
3 1 2 stoic3 ABCABketbraC=xxihCAB
4 simp2 ABCB
5 cjcl AA
6 5 3ad2ant1 ABCA
7 simp3 ABCC
8 hvmulcl ACAC
9 6 7 8 syl2anc ABCAC
10 kbfval BACBketbraAC=xxihACB
11 4 9 10 syl2anc ABCBketbraAC=xxihACB
12 simpr ABCxx
13 simpl3 ABCxC
14 hicl xCxihC
15 12 13 14 syl2anc ABCxxihC
16 simpl1 ABCxA
17 simpl2 ABCxB
18 ax-hvmulass xihCABxihCAB=xihCAB
19 15 16 17 18 syl3anc ABCxxihCAB=xihCAB
20 15 16 mulcomd ABCxxihCA=AxihC
21 his52 AxCxihAC=AxihC
22 16 12 13 21 syl3anc ABCxxihAC=AxihC
23 20 22 eqtr4d ABCxxihCA=xihAC
24 23 oveq1d ABCxxihCAB=xihACB
25 19 24 eqtr3d ABCxxihCAB=xihACB
26 25 mpteq2dva ABCxxihCAB=xxihACB
27 11 26 eqtr4d ABCBketbraAC=xxihCAB
28 3 27 eqtr4d ABCABketbraC=BketbraAC