Metamath Proof Explorer


Theorem kmlem1

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, 1 => 2. (Contributed by NM, 5-Apr-2004)

Ref Expression
Assertion kmlem1 xzxzzxwxφyzxψxzxwxφyzxzψ

Proof

Step Hyp Ref Expression
1 vex vV
2 1 rabex uv|uV
3 raleq x=uv|uzxzzuv|uz
4 raleq x=uv|uwxφwuv|uφ
5 4 raleqbi1dv x=uv|uzxwxφzuv|uwuv|uφ
6 3 5 anbi12d x=uv|uzxzzxwxφzuv|uzzuv|uwuv|uφ
7 raleq x=uv|uzxψzuv|uψ
8 7 exbidv x=uv|uyzxψyzuv|uψ
9 6 8 imbi12d x=uv|uzxzzxwxφyzxψzuv|uzzuv|uwuv|uφyzuv|uψ
10 2 9 spcv xzxzzxwxφyzxψzuv|uzzuv|uwuv|uφyzuv|uψ
11 10 alrimiv xzxzzxwxφyzxψvzuv|uzzuv|uwuv|uφyzuv|uψ
12 elrabi zuv|uzv
13 elrabi wuv|uwv
14 13 imim1i wvφwuv|uφ
15 14 ralimi2 wvφwuv|uφ
16 12 15 imim12i zvwvφzuv|uwuv|uφ
17 16 ralimi2 zvwvφzuv|uwuv|uφ
18 neeq1 u=zuz
19 18 elrab zuv|uzvz
20 19 simprbi zuv|uz
21 20 rgen zuv|uz
22 17 21 jctil zvwvφzuv|uzzuv|uwuv|uφ
23 19 biimpri zvzzuv|u
24 23 imim1i zuv|uψzvzψ
25 24 expd zuv|uψzvzψ
26 25 ralimi2 zuv|uψzvzψ
27 26 eximi yzuv|uψyzvzψ
28 22 27 imim12i zuv|uzzuv|uwuv|uφyzuv|uψzvwvφyzvzψ
29 11 28 sylg xzxzzxwxφyzxψvzvwvφyzvzψ
30 raleq v=xwvφwxφ
31 30 raleqbi1dv v=xzvwvφzxwxφ
32 raleq v=xzvzψzxzψ
33 32 exbidv v=xyzvzψyzxzψ
34 31 33 imbi12d v=xzvwvφyzvzψzxwxφyzxzψ
35 34 cbvalvw vzvwvφyzvzψxzxwxφyzxzψ
36 29 35 sylib xzxzzxwxφyzxψxzxwxφyzxzψ