Metamath Proof Explorer


Theorem knoppcnlem7

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem7.t T = x x + 1 2 x
knoppcnlem7.f F = y n 0 C n T 2 N n y
knoppcnlem7.n φ N
knoppcnlem7.1 φ C
knoppcnlem7.2 φ M 0
Assertion knoppcnlem7 φ seq 0 f + m 0 z F z m M = w seq 0 + F w M

Proof

Step Hyp Ref Expression
1 knoppcnlem7.t T = x x + 1 2 x
2 knoppcnlem7.f F = y n 0 C n T 2 N n y
3 knoppcnlem7.n φ N
4 knoppcnlem7.1 φ C
5 knoppcnlem7.2 φ M 0
6 reex V
7 6 a1i φ V
8 elnn0uz M 0 M 0
9 5 8 sylib φ M 0
10 eqid m 0 z F z m = m 0 z F z m
11 10 a1i φ k 0 M m 0 z F z m = m 0 z F z m
12 fveq2 z = w F z = F w
13 12 fveq1d z = w F z m = F w m
14 13 cbvmptv z F z m = w F w m
15 14 a1i φ k 0 M m = k z F z m = w F w m
16 fveq2 m = k F w m = F w k
17 16 mpteq2dv m = k w F w m = w F w k
18 17 adantl φ k 0 M m = k w F w m = w F w k
19 15 18 eqtrd φ k 0 M m = k z F z m = w F w k
20 elfznn0 k 0 M k 0
21 20 adantl φ k 0 M k 0
22 6 mptex w F w k V
23 22 a1i φ k 0 M w F w k V
24 11 19 21 23 fvmptd φ k 0 M m 0 z F z m k = w F w k
25 7 9 24 seqof φ seq 0 f + m 0 z F z m M = w seq 0 + F w M