Metamath Proof Explorer


Theorem kur14lem7

Description: Lemma for kur14 : main proof. The set T here contains all the distinct combinations of k and c that can arise, and we prove here that applying k or c to any element of T yields another elemnt of T . In operator shorthand, we have T = { A , c A , k A , c k A , k c A , c k c A , k c k A , c k c k A , k c k c A , c k c k c A , k c k c k A , c k c k c k A , k c k c k c A , c k c k c k c A } . From the identities c c A = A and k k A = k A , we can reduce any operator combination containing two adjacent identical operators, which is why the list only contains alternating sequences. The reason the sequences don't keep going after a certain point is due to the identity k c k A = k c k c k c k A , proved in kur14lem6 . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j JTop
kur14lem.x X=J
kur14lem.k K=clsJ
kur14lem.i I=intJ
kur14lem.a AX
kur14lem.b B=XKA
kur14lem.c C=KXA
kur14lem.d D=IKA
kur14lem.t T=AXAKABCIAKBDKIAICKDIKBKICIKIA
Assertion kur14lem7 NTNXXNKNT

Proof

Step Hyp Ref Expression
1 kur14lem.j JTop
2 kur14lem.x X=J
3 kur14lem.k K=clsJ
4 kur14lem.i I=intJ
5 kur14lem.a AX
6 kur14lem.b B=XKA
7 kur14lem.c C=KXA
8 kur14lem.d D=IKA
9 kur14lem.t T=AXAKABCIAKBDKIAICKDIKBKICIKIA
10 elun NAXAKABCIAKBDKIAICKDIKBKICIKIANAXAKABCIAKBDKIANICKDIKBKICIKIA
11 elun NAXAKABCIAKBDKIANAXAKABCIANKBDKIA
12 elun NAXAKABCIANAXAKANBCIA
13 eltpi NAXAKAN=AN=XAN=KA
14 ssun1 AXAKAAXAKABCIA
15 ssun1 AXAKABCIAAXAKABCIAKBDKIA
16 ssun1 AXAKABCIAKBDKIAAXAKABCIAKBDKIAICKDIKBKICIKIA
17 16 9 sseqtrri AXAKABCIAKBDKIAT
18 15 17 sstri AXAKABCIAT
19 14 18 sstri AXAKAT
20 2 topopn JTopXJ
21 1 20 ax-mp XJ
22 21 elexi XV
23 difss XAX
24 22 23 ssexi XAV
25 24 tpid2 XAAXAKA
26 19 25 sselii XAT
27 fvex KAV
28 27 tpid3 KAAXAKA
29 19 28 sselii KAT
30 5 26 29 kur14lem1 N=ANXXNKNT
31 1 2 3 4 5 kur14lem4 XXA=A
32 22 5 ssexi AV
33 32 tpid1 AAXAKA
34 19 33 sselii AT
35 31 34 eqeltri XXAT
36 ssun2 BCIAAXAKABCIA
37 36 18 sstri BCIAT
38 1 2 3 4 23 kur14lem3 KXAX
39 7 38 eqsstri CX
40 22 39 ssexi CV
41 40 tpid2 CBCIA
42 37 41 sselii CT
43 7 42 eqeltrri KXAT
44 23 35 43 kur14lem1 N=XANXXNKNT
45 1 2 3 4 5 kur14lem3 KAX
46 difss XKAX
47 6 46 eqsstri BX
48 22 47 ssexi BV
49 48 tpid1 BBCIA
50 37 49 sselii BT
51 6 50 eqeltrri XKAT
52 1 2 3 4 5 kur14lem5 KKA=KA
53 52 29 eqeltri KKAT
54 45 51 53 kur14lem1 N=KANXXNKNT
55 30 44 54 3jaoi N=AN=XAN=KANXXNKNT
56 13 55 syl NAXAKANXXNKNT
57 eltpi NBCIAN=BN=CN=IA
58 6 difeq2i XB=XXKA
59 1 2 3 4 45 kur14lem4 XXKA=KA
60 58 59 eqtri XB=KA
61 60 29 eqeltri XBT
62 ssun2 KBDKIAAXAKABCIAKBDKIA
63 62 17 sstri KBDKIAT
64 fvex KBV
65 64 tpid1 KBKBDKIA
66 63 65 sselii KBT
67 47 61 66 kur14lem1 N=BNXXNKNT
68 7 difeq2i XC=XKXA
69 1 2 3 4 5 kur14lem2 IA=XKXA
70 68 69 eqtr4i XC=IA
71 fvex IAV
72 71 tpid3 IABCIA
73 37 72 sselii IAT
74 70 73 eqeltri XCT
75 1 2 3 4 23 kur14lem5 KKXA=KXA
76 7 fveq2i KC=KKXA
77 75 76 7 3eqtr4i KC=C
78 77 42 eqeltri KCT
79 39 74 78 kur14lem1 N=CNXXNKNT
80 difss XKXAX
81 69 80 eqsstri IAX
82 70 difeq2i XXC=XIA
83 1 2 3 4 39 kur14lem4 XXC=C
84 82 83 eqtr3i XIA=C
85 84 42 eqeltri XIAT
86 fvex KIAV
87 86 tpid3 KIAKBDKIA
88 63 87 sselii KIAT
89 81 85 88 kur14lem1 N=IANXXNKNT
90 67 79 89 3jaoi N=BN=CN=IANXXNKNT
91 57 90 syl NBCIANXXNKNT
92 56 91 jaoi NAXAKANBCIANXXNKNT
93 12 92 sylbi NAXAKABCIANXXNKNT
94 eltpi NKBDKIAN=KBN=DN=KIA
95 1 2 3 4 47 kur14lem3 KBX
96 1 2 3 4 45 kur14lem2 IKA=XKXKA
97 6 fveq2i KB=KXKA
98 97 difeq2i XKB=XKXKA
99 96 8 98 3eqtr4i D=XKB
100 8 96 eqtri D=XKXKA
101 difss XKXKAX
102 100 101 eqsstri DX
103 22 102 ssexi DV
104 103 tpid2 DKBDKIA
105 63 104 sselii DT
106 99 105 eqeltrri XKBT
107 1 2 3 4 47 kur14lem5 KKB=KB
108 107 66 eqeltri KKBT
109 95 106 108 kur14lem1 N=KBNXXNKNT
110 99 difeq2i XD=XXKB
111 1 2 3 4 95 kur14lem4 XXKB=KB
112 110 111 eqtri XD=KB
113 112 66 eqeltri XDT
114 ssun1 ICKDIKBICKDIKBKICIKIA
115 ssun2 ICKDIKBKICIKIAAXAKABCIAKBDKIAICKDIKBKICIKIA
116 115 9 sseqtrri ICKDIKBKICIKIAT
117 114 116 sstri ICKDIKBT
118 fvex KDV
119 118 tpid2 KDICKDIKB
120 117 119 sselii KDT
121 102 113 120 kur14lem1 N=DNXXNKNT
122 1 2 3 4 81 kur14lem3 KIAX
123 1 2 3 4 39 kur14lem2 IC=XKXC
124 70 fveq2i KXC=KIA
125 124 difeq2i XKXC=XKIA
126 123 125 eqtri IC=XKIA
127 fvex ICV
128 127 tpid1 ICICKDIKB
129 117 128 sselii ICT
130 126 129 eqeltrri XKIAT
131 1 2 3 4 81 kur14lem5 KKIA=KIA
132 131 88 eqeltri KKIAT
133 122 130 132 kur14lem1 N=KIANXXNKNT
134 109 121 133 3jaoi N=KBN=DN=KIANXXNKNT
135 94 134 syl NKBDKIANXXNKNT
136 93 135 jaoi NAXAKABCIANKBDKIANXXNKNT
137 11 136 sylbi NAXAKABCIAKBDKIANXXNKNT
138 elun NICKDIKBKICIKIANICKDIKBNKICIKIA
139 eltpi NICKDIKBN=ICN=KDN=IKB
140 difss XKXCX
141 123 140 eqsstri ICX
142 126 difeq2i XIC=XXKIA
143 1 2 3 4 122 kur14lem4 XXKIA=KIA
144 142 143 eqtri XIC=KIA
145 144 88 eqeltri XICT
146 ssun2 KICIKIAICKDIKBKICIKIA
147 146 116 sstri KICIKIAT
148 fvex KICV
149 148 prid1 KICKICIKIA
150 147 149 sselii KICT
151 141 145 150 kur14lem1 N=ICNXXNKNT
152 1 2 3 4 102 kur14lem3 KDX
153 99 fveq2i KD=KXKB
154 153 difeq2i XKD=XKXKB
155 1 2 3 4 95 kur14lem2 IKB=XKXKB
156 154 155 eqtr4i XKD=IKB
157 fvex IKBV
158 157 tpid3 IKBICKDIKB
159 117 158 sselii IKBT
160 156 159 eqeltri XKDT
161 1 2 3 4 102 kur14lem5 KKD=KD
162 161 120 eqeltri KKDT
163 152 160 162 kur14lem1 N=KDNXXNKNT
164 difss XKXKBX
165 155 164 eqsstri IKBX
166 156 difeq2i XXKD=XIKB
167 1 2 3 4 152 kur14lem4 XXKD=KD
168 166 167 eqtr3i XIKB=KD
169 168 120 eqeltri XIKBT
170 1 2 3 4 5 6 kur14lem6 KIKB=KB
171 170 66 eqeltri KIKBT
172 165 169 171 kur14lem1 N=IKBNXXNKNT
173 151 163 172 3jaoi N=ICN=KDN=IKBNXXNKNT
174 139 173 syl NICKDIKBNXXNKNT
175 elpri NKICIKIAN=KICN=IKIA
176 1 2 3 4 141 kur14lem3 KICX
177 126 fveq2i KIC=KXKIA
178 177 difeq2i XKIC=XKXKIA
179 1 2 3 4 122 kur14lem2 IKIA=XKXKIA
180 178 179 eqtr4i XKIC=IKIA
181 fvex IKIAV
182 181 prid2 IKIAKICIKIA
183 147 182 sselii IKIAT
184 180 183 eqeltri XKICT
185 1 2 3 4 141 kur14lem5 KKIC=KIC
186 185 150 eqeltri KKICT
187 176 184 186 kur14lem1 N=KICNXXNKNT
188 difss XKXKIAX
189 179 188 eqsstri IKIAX
190 180 difeq2i XXKIC=XIKIA
191 1 2 3 4 176 kur14lem4 XXKIC=KIC
192 190 191 eqtr3i XIKIA=KIC
193 192 150 eqeltri XIKIAT
194 1 2 3 4 23 69 kur14lem6 KIKIA=KIA
195 194 88 eqeltri KIKIAT
196 189 193 195 kur14lem1 N=IKIANXXNKNT
197 187 196 jaoi N=KICN=IKIANXXNKNT
198 175 197 syl NKICIKIANXXNKNT
199 174 198 jaoi NICKDIKBNKICIKIANXXNKNT
200 138 199 sylbi NICKDIKBKICIKIANXXNKNT
201 137 200 jaoi NAXAKABCIAKBDKIANICKDIKBKICIKIANXXNKNT
202 10 201 sylbi NAXAKABCIAKBDKIAICKDIKBKICIKIANXXNKNT
203 202 9 eleq2s NTNXXNKNT