Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lbsss.v | |
|
lbsss.j | |
||
lbssp.n | |
||
lbsind.f | |
||
lbsind.s | |
||
lbsind.k | |
||
lbsind.z | |
||
Assertion | lbsind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsss.v | |
|
2 | lbsss.j | |
|
3 | lbssp.n | |
|
4 | lbsind.f | |
|
5 | lbsind.s | |
|
6 | lbsind.k | |
|
7 | lbsind.z | |
|
8 | eldifsn | |
|
9 | elfvdm | |
|
10 | 9 2 | eleq2s | |
11 | 1 4 5 6 2 3 7 | islbs | |
12 | 10 11 | syl | |
13 | 12 | ibi | |
14 | 13 | simp3d | |
15 | oveq2 | |
|
16 | sneq | |
|
17 | 16 | difeq2d | |
18 | 17 | fveq2d | |
19 | 15 18 | eleq12d | |
20 | 19 | notbid | |
21 | oveq1 | |
|
22 | 21 | eleq1d | |
23 | 22 | notbid | |
24 | 20 23 | rspc2v | |
25 | 14 24 | syl5com | |
26 | 25 | impl | |
27 | 8 26 | sylan2br | |