Metamath Proof Explorer


Theorem lcdvsval

Description: Value of scalar product operation value for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses lcdvsval.h H=LHypK
lcdvsval.u U=DVecHKW
lcdvsval.v V=BaseU
lcdvsval.s S=ScalarU
lcdvsval.r R=BaseS
lcdvsval.t ·˙=S
lcdvsval.c C=LCDualKW
lcdvsval.f F=BaseC
lcdvsval.m ˙=C
lcdvsval.k φKHLWH
lcdvsval.x φXR
lcdvsval.g φGF
lcdvsval.a φAV
Assertion lcdvsval φX˙GA=GA·˙X

Proof

Step Hyp Ref Expression
1 lcdvsval.h H=LHypK
2 lcdvsval.u U=DVecHKW
3 lcdvsval.v V=BaseU
4 lcdvsval.s S=ScalarU
5 lcdvsval.r R=BaseS
6 lcdvsval.t ·˙=S
7 lcdvsval.c C=LCDualKW
8 lcdvsval.f F=BaseC
9 lcdvsval.m ˙=C
10 lcdvsval.k φKHLWH
11 lcdvsval.x φXR
12 lcdvsval.g φGF
13 lcdvsval.a φAV
14 eqid LDualU=LDualU
15 eqid LDualU=LDualU
16 1 2 14 15 7 9 10 lcdvs φ˙=LDualU
17 16 oveqd φX˙G=XLDualUG
18 17 fveq1d φX˙GA=XLDualUGA
19 eqid LFnlU=LFnlU
20 1 2 10 dvhlmod φULMod
21 1 7 8 2 19 10 12 lcdvbaselfl φGLFnlU
22 19 3 4 5 6 14 15 20 11 21 13 ldualvsval φXLDualUGA=GA·˙X
23 18 22 eqtrd φX˙GA=GA·˙X