Metamath Proof Explorer


Theorem lcfrlem34

Description: Lemma for lcfr . (Contributed by NM, 10-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
lcfrlem30.m -˙=-D
lcfrlem30.c C=JX-˙FJYISJXIDJY
Assertion lcfrlem34 φC0D

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 lcfrlem30.m -˙=-D
25 lcfrlem30.c C=JX-˙FJYISJXIDJY
26 9 adantr φJXI=QKHLWH
27 10 adantr φJXI=QXV0˙
28 11 adantr φJXI=QYV0˙
29 12 adantr φJXI=QNXNY
30 19 adantr φJXI=QIB
31 22 adantr φJXI=QJYIQ
32 simpr φJXI=QJXI=Q
33 1 2 3 4 5 6 7 8 26 27 28 29 13 14 15 16 17 18 30 20 21 31 23 24 25 32 lcfrlem33 φJXI=QC0D
34 9 adantr φJXIQKHLWH
35 10 adantr φJXIQXV0˙
36 11 adantr φJXIQYV0˙
37 12 adantr φJXIQNXNY
38 19 adantr φJXIQIB
39 22 adantr φJXIQJYIQ
40 simpr φJXIQJXIQ
41 1 2 3 4 5 6 7 8 34 35 36 37 13 14 15 16 17 18 38 20 21 39 23 24 25 40 lcfrlem32 φJXIQC0D
42 33 41 pm2.61dane φC0D