Metamath Proof Explorer


Theorem lcm2un

Description: Least common multiple of natural numbers up to 2 equals 2. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Assertion lcm2un lcm_12=2

Proof

Step Hyp Ref Expression
1 2nn 2
2 id 22
3 2 lcmfunnnd 2lcm_12=lcm_121lcm2
4 1 3 ax-mp lcm_12=lcm_121lcm2
5 2m1e1 21=1
6 5 oveq2i 121=11
7 6 fveq2i lcm_121=lcm_11
8 7 oveq1i lcm_121lcm2=lcm_11lcm2
9 4 8 eqtri lcm_12=lcm_11lcm2
10 lcm1un lcm_11=1
11 10 oveq1i lcm_11lcm2=1lcm2
12 1z 1
13 2z 2
14 lcmcom 121lcm2=2lcm1
15 12 13 14 mp2an 1lcm2=2lcm1
16 lcm1 22lcm1=2
17 13 16 ax-mp 2lcm1=2
18 2re 2
19 0le2 02
20 18 19 pm3.2i 202
21 absid 2022=2
22 20 21 ax-mp 2=2
23 17 22 eqtri 2lcm1=2
24 15 23 eqtri 1lcm2=2
25 11 24 eqtri lcm_11lcm2=2
26 9 25 eqtri lcm_12=2