Metamath Proof Explorer


Theorem lcmineqlem20

Description: Inequality for lcm lemma. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem20.1 φN
Assertion lcmineqlem20 φN22 Nlcm_12 N+1

Proof

Step Hyp Ref Expression
1 lcmineqlem20.1 φN
2 1 nnred φN
3 2nn0 20
4 3 a1i φ20
5 1 nnnn0d φN0
6 4 5 nn0mulcld φ2 N0
7 2re 2
8 reexpcl 22 N022 N
9 7 8 mpan 2 N022 N
10 6 9 syl φ22 N
11 2 10 remulcld φN22 N
12 7 a1i φ2
13 12 2 remulcld φ2 N
14 1red φ1
15 13 14 readdcld φ2 N+1
16 2nn 2
17 16 a1i φ2
18 17 1 nnmulcld φ2 N
19 5 nn0ge0d φ0N
20 17 nnge1d φ12
21 2 12 19 20 lemulge12d φN2 N
22 18 5 21 bccl2d φ(2 NN)
23 22 nnred φ(2 NN)
24 15 23 remulcld φ2 N+1(2 NN)
25 2 24 remulcld φN2 N+1(2 NN)
26 fz1ssnn 12 N+1
27 fzfi 12 N+1Fin
28 lcmfnncl 12 N+112 N+1Finlcm_12 N+1
29 26 27 28 mp2an lcm_12 N+1
30 29 a1i φlcm_12 N+1
31 30 nnred φlcm_12 N+1
32 5 lcmineqlem17 φ22 N2 N+1(2 NN)
33 1 nnrpd φN+
34 10 24 33 lemul2d φ22 N2 N+1(2 NN)N22 NN2 N+1(2 NN)
35 32 34 mpbid φN22 NN2 N+1(2 NN)
36 2 recnd φN
37 15 recnd φ2 N+1
38 23 recnd φ(2 NN)
39 36 37 38 mulassd φN2 N+1(2 NN)=N2 N+1(2 NN)
40 1 lcmineqlem19 φN2 N+1(2 NN)lcm_12 N+1
41 18 peano2nnd φ2 N+1
42 1 41 nnmulcld φN2 N+1
43 42 22 nnmulcld φN2 N+1(2 NN)
44 43 nnzd φN2 N+1(2 NN)
45 dvdsle N2 N+1(2 NN)lcm_12 N+1N2 N+1(2 NN)lcm_12 N+1N2 N+1(2 NN)lcm_12 N+1
46 44 30 45 syl2anc φN2 N+1(2 NN)lcm_12 N+1N2 N+1(2 NN)lcm_12 N+1
47 40 46 mpd φN2 N+1(2 NN)lcm_12 N+1
48 39 47 eqbrtrrd φN2 N+1(2 NN)lcm_12 N+1
49 11 25 31 35 48 letrd φN22 Nlcm_12 N+1