Metamath Proof Explorer


Theorem lcmledvds

Description: A positive integer which both operands of the lcm operator divide bounds it. (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmledvds KMN¬M=0N=0MKNKMlcmNK

Proof

Step Hyp Ref Expression
1 lcmn0val MN¬M=0N=0MlcmN=supn|MnNn<
2 1 3adantl1 KMN¬M=0N=0MlcmN=supn|MnNn<
3 2 adantr KMN¬M=0N=0MKNKMlcmN=supn|MnNn<
4 breq2 n=KMnMK
5 breq2 n=KNnNK
6 4 5 anbi12d n=KMnNnMKNK
7 6 elrab Kn|MnNnKMKNK
8 ssrab2 n|MnNn
9 nnuz =1
10 8 9 sseqtri n|MnNn1
11 infssuzle n|MnNn1Kn|MnNnsupn|MnNn<K
12 10 11 mpan Kn|MnNnsupn|MnNn<K
13 7 12 sylbir KMKNKsupn|MnNn<K
14 13 ex KMKNKsupn|MnNn<K
15 14 3ad2ant1 KMNMKNKsupn|MnNn<K
16 15 adantr KMN¬M=0N=0MKNKsupn|MnNn<K
17 16 imp KMN¬M=0N=0MKNKsupn|MnNn<K
18 3 17 eqbrtrd KMN¬M=0N=0MKNKMlcmNK
19 18 ex KMN¬M=0N=0MKNKMlcmNK