Description: Lemma for lspeqlco . (Contributed by AV, 20-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lspeqvlco.b | |
|
Assertion | lcosslsp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspeqvlco.b | |
|
2 | ellcoellss | |
|
3 | 2 | 3exp | |
4 | 3 | ad2antrr | |
5 | 4 | imp | |
6 | elequ1 | |
|
7 | 6 | rspcv | |
8 | 7 | ad2antlr | |
9 | 5 8 | syld | |
10 | 9 | ralrimiva | |
11 | vex | |
|
12 | 11 | elintrab | |
13 | 10 12 | sylibr | |
14 | simpll | |
|
15 | elpwi | |
|
16 | 15 | ad2antlr | |
17 | eqid | |
|
18 | eqid | |
|
19 | 1 17 18 | lspval | |
20 | 14 16 19 | syl2anc | |
21 | 13 20 | eleqtrrd | |
22 | 21 | ex | |
23 | 22 | ssrdv | |