Metamath Proof Explorer


Theorem lcosslsp

Description: Lemma for lspeqlco . (Contributed by AV, 20-Apr-2019)

Ref Expression
Hypothesis lspeqvlco.b B=BaseM
Assertion lcosslsp MLModV𝒫BMLinCoVLSpanMV

Proof

Step Hyp Ref Expression
1 lspeqvlco.b B=BaseM
2 ellcoellss MLModsLSubSpMVsyMLinCoVys
3 2 3exp MLModsLSubSpMVsyMLinCoVys
4 3 ad2antrr MLModV𝒫BxMLinCoVsLSubSpMVsyMLinCoVys
5 4 imp MLModV𝒫BxMLinCoVsLSubSpMVsyMLinCoVys
6 elequ1 y=xysxs
7 6 rspcv xMLinCoVyMLinCoVysxs
8 7 ad2antlr MLModV𝒫BxMLinCoVsLSubSpMyMLinCoVysxs
9 5 8 syld MLModV𝒫BxMLinCoVsLSubSpMVsxs
10 9 ralrimiva MLModV𝒫BxMLinCoVsLSubSpMVsxs
11 vex xV
12 11 elintrab xsLSubSpM|VssLSubSpMVsxs
13 10 12 sylibr MLModV𝒫BxMLinCoVxsLSubSpM|Vs
14 simpll MLModV𝒫BxMLinCoVMLMod
15 elpwi V𝒫BVB
16 15 ad2antlr MLModV𝒫BxMLinCoVVB
17 eqid LSubSpM=LSubSpM
18 eqid LSpanM=LSpanM
19 1 17 18 lspval MLModVBLSpanMV=sLSubSpM|Vs
20 14 16 19 syl2anc MLModV𝒫BxMLinCoVLSpanMV=sLSubSpM|Vs
21 13 20 eleqtrrd MLModV𝒫BxMLinCoVxLSpanMV
22 21 ex MLModV𝒫BxMLinCoVxLSpanMV
23 22 ssrdv MLModV𝒫BMLinCoVLSpanMV