Metamath Proof Explorer


Theorem lcv2

Description: Covering property of a subspace plus an atom. ( chcv2 analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcv2.s S=LSubSpW
lcv2.p ˙=LSSumW
lcv2.a A=LSAtomsW
lcv2.c C=LW
lcv2.w φWLVec
lcv2.u φUS
lcv2.q φQA
Assertion lcv2 φUU˙QUCU˙Q

Proof

Step Hyp Ref Expression
1 lcv2.s S=LSubSpW
2 lcv2.p ˙=LSSumW
3 lcv2.a A=LSAtomsW
4 lcv2.c C=LW
5 lcv2.w φWLVec
6 lcv2.u φUS
7 lcv2.q φQA
8 lveclmod WLVecWLMod
9 5 8 syl φWLMod
10 1 lsssssubg WLModSSubGrpW
11 9 10 syl φSSubGrpW
12 11 6 sseldd φUSubGrpW
13 1 3 9 7 lsatlssel φQS
14 11 13 sseldd φQSubGrpW
15 2 12 14 lssnle φ¬QUUU˙Q
16 1 2 3 4 5 6 7 lcv1 φ¬QUUCU˙Q
17 15 16 bitr3d φUU˙QUCU˙Q