Metamath Proof Explorer


Theorem lcvnbtwn

Description: The covers relation implies no in-betweenness. ( cvnbtwn analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S=LSubSpW
lcvnbtwn.c C=LW
lcvnbtwn.w φWX
lcvnbtwn.r φRS
lcvnbtwn.t φTS
lcvnbtwn.u φUS
lcvnbtwn.d φRCT
Assertion lcvnbtwn φ¬RUUT

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S=LSubSpW
2 lcvnbtwn.c C=LW
3 lcvnbtwn.w φWX
4 lcvnbtwn.r φRS
5 lcvnbtwn.t φTS
6 lcvnbtwn.u φUS
7 lcvnbtwn.d φRCT
8 1 2 3 4 5 lcvbr φRCTRT¬uSRuuT
9 7 8 mpbid φRT¬uSRuuT
10 9 simprd φ¬uSRuuT
11 psseq2 u=URuRU
12 psseq1 u=UuTUT
13 11 12 anbi12d u=URuuTRUUT
14 13 rspcev USRUUTuSRuuT
15 6 14 sylan φRUUTuSRuuT
16 10 15 mtand φ¬RUUT