Metamath Proof Explorer


Theorem lcvnbtwn2

Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 7-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S=LSubSpW
lcvnbtwn.c C=LW
lcvnbtwn.w φWX
lcvnbtwn.r φRS
lcvnbtwn.t φTS
lcvnbtwn.u φUS
lcvnbtwn.d φRCT
lcvnbtwn2.p φRU
lcvnbtwn2.q φUT
Assertion lcvnbtwn2 φU=T

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S=LSubSpW
2 lcvnbtwn.c C=LW
3 lcvnbtwn.w φWX
4 lcvnbtwn.r φRS
5 lcvnbtwn.t φTS
6 lcvnbtwn.u φUS
7 lcvnbtwn.d φRCT
8 lcvnbtwn2.p φRU
9 lcvnbtwn2.q φUT
10 1 2 3 4 5 6 7 lcvnbtwn φ¬RUUT
11 iman RUUTU=T¬RUUT¬U=T
12 anass RUUT¬U=TRUUT¬U=T
13 dfpss2 UTUT¬U=T
14 13 anbi2i RUUTRUUT¬U=T
15 12 14 bitr4i RUUT¬U=TRUUT
16 15 notbii ¬RUUT¬U=T¬RUUT
17 11 16 bitr2i ¬RUUTRUUTU=T
18 10 17 sylib φRUUTU=T
19 8 9 18 mp2and φU=T