Metamath Proof Explorer


Theorem ldepslinc

Description: For (left) vector spaces, isldepslvec2 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Assertion ldepslinc mLVecs𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v

Proof

Step Hyp Ref Expression
1 eqid Basem=Basem
2 eqid 0m=0m
3 eqid Scalarm=Scalarm
4 eqid BaseScalarm=BaseScalarm
5 eqid 0Scalarm=0Scalarm
6 1 2 3 4 5 isldepslvec2 mLVecs𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vslinDepSm
7 6 bicomd mLVecs𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
8 7 rgen2 mLVecs𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
9 ldepsnlinc mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsvv
10 df-ne flinCmsvv¬flinCmsv=v
11 10 imbi2i finSupp0ScalarmfflinCmsvvfinSupp0Scalarmf¬flinCmsv=v
12 imnan finSupp0Scalarmf¬flinCmsv=v¬finSupp0ScalarmfflinCmsv=v
13 11 12 bitri finSupp0ScalarmfflinCmsvv¬finSupp0ScalarmfflinCmsv=v
14 13 ralbii fBaseScalarmsvfinSupp0ScalarmfflinCmsvvfBaseScalarmsv¬finSupp0ScalarmfflinCmsv=v
15 ralnex fBaseScalarmsv¬finSupp0ScalarmfflinCmsv=v¬fBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
16 14 15 bitri fBaseScalarmsvfinSupp0ScalarmfflinCmsvv¬fBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
17 16 ralbii vsfBaseScalarmsvfinSupp0ScalarmfflinCmsvvvs¬fBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
18 ralnex vs¬fBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
19 17 18 bitri vsfBaseScalarmsvfinSupp0ScalarmfflinCmsvv¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
20 19 anbi2i slinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsvvslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
21 20 2rexbii mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsvvmLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
22 9 21 mpbi mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
23 22 orci mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vmLMods𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
24 r19.43 mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vs𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSmmLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vmLMods𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
25 23 24 mpbir mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vs𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
26 r19.43 s𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSms𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vs𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
27 26 rexbii mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSmmLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vs𝒫BasemvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
28 25 27 mpbir mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
29 xor ¬slinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm
30 29 bicomi slinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm¬slinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
31 30 rexbii s𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSms𝒫Basem¬slinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
32 rexnal s𝒫Basem¬slinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬s𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
33 31 32 bitri s𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm¬s𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
34 33 rexbii mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSmmLMod¬s𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
35 rexnal mLMod¬s𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
36 34 35 bitri mLMods𝒫BasemslinDepSm¬vsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=vvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬slinDepSm¬mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
37 28 36 mpbi ¬mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v
38 8 37 pm3.2i mLVecs𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v¬mLMods𝒫BasemslinDepSmvsfBaseScalarmsvfinSupp0ScalarmfflinCmsv=v