Metamath Proof Explorer


Theorem ldual0vs

Description: Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses ldual0vs.f F = LFnl W
ldual0vs.r R = Scalar W
ldual0vs.z 0 ˙ = 0 R
ldual0vs.d D = LDual W
ldual0vs.t · ˙ = D
ldual0vs.o O = 0 D
ldual0vs.w φ W LMod
ldual0vs.g φ G F
Assertion ldual0vs φ 0 ˙ · ˙ G = O

Proof

Step Hyp Ref Expression
1 ldual0vs.f F = LFnl W
2 ldual0vs.r R = Scalar W
3 ldual0vs.z 0 ˙ = 0 R
4 ldual0vs.d D = LDual W
5 ldual0vs.t · ˙ = D
6 ldual0vs.o O = 0 D
7 ldual0vs.w φ W LMod
8 ldual0vs.g φ G F
9 eqid Scalar D = Scalar D
10 eqid 0 Scalar D = 0 Scalar D
11 2 3 4 9 10 7 ldual0 φ 0 Scalar D = 0 ˙
12 11 oveq1d φ 0 Scalar D · ˙ G = 0 ˙ · ˙ G
13 4 7 lduallmod φ D LMod
14 eqid Base D = Base D
15 1 4 14 7 8 ldualelvbase φ G Base D
16 14 9 5 10 6 lmod0vs D LMod G Base D 0 Scalar D · ˙ G = O
17 13 15 16 syl2anc φ 0 Scalar D · ˙ G = O
18 12 17 eqtr3d φ 0 ˙ · ˙ G = O