Metamath Proof Explorer


Theorem leftval

Description: The value of the left options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion leftval L A = x Old bday A | x < s A

Proof

Step Hyp Ref Expression
1 2fveq3 y = A Old bday y = Old bday A
2 breq2 y = A x < s y x < s A
3 1 2 rabeqbidv y = A x Old bday y | x < s y = x Old bday A | x < s A
4 df-left L = y No x Old bday y | x < s y
5 fvex Old bday A V
6 5 rabex x Old bday A | x < s A V
7 3 4 6 fvmpt A No L A = x Old bday A | x < s A
8 4 fvmptndm ¬ A No L A =
9 bdaydm dom bday = No
10 9 eleq2i A dom bday A No
11 ndmfv ¬ A dom bday bday A =
12 10 11 sylnbir ¬ A No bday A =
13 12 fveq2d ¬ A No Old bday A = Old
14 old0 Old =
15 13 14 eqtrdi ¬ A No Old bday A =
16 15 rabeqdv ¬ A No x Old bday A | x < s A = x | x < s A
17 rab0 x | x < s A =
18 16 17 eqtrdi ¬ A No x Old bday A | x < s A =
19 8 18 eqtr4d ¬ A No L A = x Old bday A | x < s A
20 7 19 pm2.61i L A = x Old bday A | x < s A