Metamath Proof Explorer


Theorem leordtvallem1

Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis leordtval.1 A=ranx*x+∞
Assertion leordtvallem1 A=ranx*y*|¬yx

Proof

Step Hyp Ref Expression
1 leordtval.1 A=ranx*x+∞
2 iocssxr x+∞*
3 sseqin2 x+∞**x+∞=x+∞
4 2 3 mpbi *x+∞=x+∞
5 simpl x*y*x*
6 pnfxr +∞*
7 elioc1 x*+∞*yx+∞y*x<yy+∞
8 5 6 7 sylancl x*y*yx+∞y*x<yy+∞
9 simpr x*y*y*
10 pnfge y*y+∞
11 9 10 jccir x*y*y*y+∞
12 11 biantrurd x*y*x<yy*y+∞x<y
13 3anan32 y*x<yy+∞y*y+∞x<y
14 12 13 bitr4di x*y*x<yy*x<yy+∞
15 xrltnle x*y*x<y¬yx
16 8 14 15 3bitr2d x*y*yx+∞¬yx
17 16 rabbi2dva x**x+∞=y*|¬yx
18 4 17 eqtr3id x*x+∞=y*|¬yx
19 18 mpteq2ia x*x+∞=x*y*|¬yx
20 19 rneqi ranx*x+∞=ranx*y*|¬yx
21 1 20 eqtri A=ranx*y*|¬yx