Metamath Proof Explorer


Theorem lerec

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lerec A0<AB0<BAB1B1A

Proof

Step Hyp Ref Expression
1 ltrec B0<BA0<AB<A1A<1B
2 1 ancoms A0<AB0<BB<A1A<1B
3 2 notbid A0<AB0<B¬B<A¬1A<1B
4 simpll A0<AB0<BA
5 simprl A0<AB0<BB
6 4 5 lenltd A0<AB0<BAB¬B<A
7 simprr A0<AB0<B0<B
8 7 gt0ne0d A0<AB0<BB0
9 5 8 rereccld A0<AB0<B1B
10 simplr A0<AB0<B0<A
11 10 gt0ne0d A0<AB0<BA0
12 4 11 rereccld A0<AB0<B1A
13 9 12 lenltd A0<AB0<B1B1A¬1A<1B
14 3 6 13 3bitr4d A0<AB0<BAB1B1A