Metamath Proof Explorer


Theorem lfinpfin

Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion lfinpfin A LocFin J A PtFin

Proof

Step Hyp Ref Expression
1 eqid J = J
2 eqid A = A
3 1 2 locfinbas A LocFin J J = A
4 3 eleq2d A LocFin J x J x A
5 4 biimpar A LocFin J x A x J
6 1 locfinnei A LocFin J x J n J x n s A | s n Fin
7 5 6 syldan A LocFin J x A n J x n s A | s n Fin
8 inelcm x s x n s n
9 8 expcom x n x s s n
10 9 ad2antlr A LocFin J x A x n s A x s s n
11 10 ss2rabdv A LocFin J x A x n s A | x s s A | s n
12 ssfi s A | s n Fin s A | x s s A | s n s A | x s Fin
13 12 expcom s A | x s s A | s n s A | s n Fin s A | x s Fin
14 11 13 syl A LocFin J x A x n s A | s n Fin s A | x s Fin
15 14 expimpd A LocFin J x A x n s A | s n Fin s A | x s Fin
16 15 rexlimdvw A LocFin J x A n J x n s A | s n Fin s A | x s Fin
17 7 16 mpd A LocFin J x A s A | x s Fin
18 17 ralrimiva A LocFin J x A s A | x s Fin
19 2 isptfin A LocFin J A PtFin x A s A | x s Fin
20 18 19 mpbird A LocFin J A PtFin