Metamath Proof Explorer


Theorem lfinpfin

Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010) (Proof shortened by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion lfinpfin ALocFinJAPtFin

Proof

Step Hyp Ref Expression
1 eqid J=J
2 eqid A=A
3 1 2 locfinbas ALocFinJJ=A
4 3 eleq2d ALocFinJxJxA
5 4 biimpar ALocFinJxAxJ
6 1 locfinnei ALocFinJxJnJxnsA|snFin
7 5 6 syldan ALocFinJxAnJxnsA|snFin
8 inelcm xsxnsn
9 8 expcom xnxssn
10 9 ad2antlr ALocFinJxAxnsAxssn
11 10 ss2rabdv ALocFinJxAxnsA|xssA|sn
12 ssfi sA|snFinsA|xssA|snsA|xsFin
13 12 expcom sA|xssA|snsA|snFinsA|xsFin
14 11 13 syl ALocFinJxAxnsA|snFinsA|xsFin
15 14 expimpd ALocFinJxAxnsA|snFinsA|xsFin
16 15 rexlimdvw ALocFinJxAnJxnsA|snFinsA|xsFin
17 7 16 mpd ALocFinJxAsA|xsFin
18 17 ralrimiva ALocFinJxAsA|xsFin
19 2 isptfin ALocFinJAPtFinxAsA|xsFin
20 18 19 mpbird ALocFinJAPtFin